Skip to main content

Advertisement

Log in

The Long Bone Deformity of Osteogenesis Imperfecta III: Analysis of Structural Changes Carried Out with Scanning Electron Microscopic Morphometry

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The wedges of the mid-diaphyseal osteotomies carried out to correct the femoral and/or tibial native deformity in type III osteogenesis imperfecta (OI III) were used to study the remodeling patterns and lamellar organization at the level of the major deformity. Histology and scanning electron microscopy (SEM) morphology showed abnormal cortical remodeling characterized by the failure to form a cylinder of compact bone with a regular marrow canal. Atypical, flattened, and large resorption lacunae with a wide resorption front on one side and systems of parallel lamellae on the opposite side were observed, resembling those formerly reported as drifting osteons. SEM morphometry documented a higher percentage of nonossified vascular/resorption area (44.3 %) in OI than in controls (13.6 %), a lower density of secondary osteons, and lower values for the parameters expressing the individual osteon size. The mean osteon total area, the mean central canal area, and the mean osteon bone area of two selected, randomized populations of secondary osteons were significantly higher (p < 0.001, p = 0.028, and p < 0.001, respectively) in control bones than in OI. The mean ossified matrix area was not significantly different, but the mean secondary osteon number and mean density were higher in controls (both p < 0.001). Osteon wedges were carried out to correct the native deformity of OI III and morphologic analysis suggested that the abnormal remodeling pattern (with “drifting osteons”) may result from the altered load and tensile stresses on the deformed tubular bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ste-Marie LG, Charan SA, Eduard C, Chapuy MC, Meunier PJ (1984) Iliac bone histomorphometry in adults and children with osteogenesis imperfecta. J Clin Pathol 37:1081–1089

    Article  PubMed  CAS  Google Scholar 

  2. Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26:581–589

    Article  PubMed  CAS  Google Scholar 

  3. Uveges TE, Collin-Osdoby P, Cabral WA, Ledgard F et al (2008) Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursor. J Bone Miner Res 23:1983–1994

    Article  PubMed  CAS  Google Scholar 

  4. Gioia R, Panaroni C, Bsio R, Palladini G et al (2012) Impaired osteoblastogenesis in a murine model of dominant osteogenesis imperfecta: a new target for osteogenesis imperfecta pharmacological therapy. Stem Cells 30:1465–1476

    Article  PubMed  CAS  Google Scholar 

  5. Rowe DW, Shapiro JR (1998) Osteogenesis imperfecta. In: Avioli LV, Kane SM (eds) Metabolic bone diseases and clinical related disorders, 3rd edn. Academic Press, San Diego, pp 651–695

    Chapter  Google Scholar 

  6. Pazzaglia UE, Beluffi G, Benetti A, Bondioni MP, Zarattini G (2011) A review of the actual knowledge of the processes governing growth and development of long bones. Fetal Pediatr Pathol. doi:10.3109/15513815.2010.524693

    PubMed  Google Scholar 

  7. Frost HM (2003) On the pathogenesis of osteogenesis imperfecta: some insights of the Utah paradigm of skeletal physiology. J Musculoskelet Neuronal Interact 3:1–7

    PubMed  CAS  Google Scholar 

  8. Sillence DO, Senn A, Danks M (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16:101–116

    Article  PubMed  CAS  Google Scholar 

  9. Pazzaglia UE, Congiu T, Marchese M, Spagnuolo F, Quacci D (2012) Morphometry and patterns of lamellar bone in human haversian systems. Anat Rec 295:1421–1429

    Article  Google Scholar 

  10. Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7:540–557

    Article  PubMed  CAS  Google Scholar 

  11. Vetter U, Fisher LW, Mintz KP, Kopp JB, Tuross N, Termine JD, Robey PG (1991) Osteogenesis imperfecta: changes in noncollagenous proteins in bone. J Bone Miner Res 6:501–505

    Article  PubMed  CAS  Google Scholar 

  12. Fedarko NS, Moericke M, Brenner R, Robey PG, Vetter U (1992) Extracellular matrix formation by osteoblasts from patients with osteogenesis imperfecta. J Bone Miner Res 7:921–930

    Article  PubMed  CAS  Google Scholar 

  13. Traub W, Arad T, Vetter U, Weiner S (1994) Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol 14:337–345

    Article  PubMed  CAS  Google Scholar 

  14. Sztrolovics R, Glorieux FH, Travers R, van der Rest M, Roughley PJ (1994) Osteogenesis imperfecta: comparison of molecular defects with bone histological changes. Bone 15:321–328

    Article  PubMed  CAS  Google Scholar 

  15. Cassella JP, Stamp TCB, Ali SY (1996) A morphological and ultrastructural study of bone in osteogenesis imperfecta. Calcif Tissue Int 58:155–165

    PubMed  CAS  Google Scholar 

  16. Sarathchandra P, Pope FM, Ali SY (1996) An ultrastructural and immunogold localization study of proteoglycans associated with the osteocytes of fetal bone in osteogenesis imperfecta. Calcif Tissue Int 58:435–442

    PubMed  CAS  Google Scholar 

  17. Fedarko NS, D’Avis P, Frazier CR, Burril MJ, Fergusson V, Tayback M, Sponseller PD, Shapiro JR (1995) Cell proliferation of human fibroblasts and osteoblasts in osteogenesis imperfecta: influence of age. J Bone Miner Res 10:1705–1712

    Article  PubMed  CAS  Google Scholar 

  18. Iwamoto J, Takeda T, Ichimura S (2002) Increased bone resorption with decreased activity and increased recruitment of osteoblasts in osteogenesis imperfecta type I. J Bone Miner Metab 20:174–179

    Article  PubMed  Google Scholar 

  19. Ramser JR, Villanueva AR, Pirok DDS, Frost HM (1966) Tetracycline-based measurement of bone dynamics in 3 women with osteogenesis imperfecta. Clin Orthop Relat Res 49:151–162

    PubMed  CAS  Google Scholar 

  20. Ruth EB (1943) Osteogenesis imperfecta, anatomic study of a case. Arch Pathol 36:211–225

    Google Scholar 

  21. Hebara H, Yamasaki Y, Kyogoku M (1969) An autopsy case of osteogenesis imperfecta congenita. Histochemical and electron microscopical studies. Acta Pathol Jpn 377:394–399

    Google Scholar 

  22. Milgram JW, Flick MR, Engh CA (1973) Osteogenesis imperfecta: a histopathological report. J Bone Joint Surg Am 55:506–515

    PubMed  CAS  Google Scholar 

  23. Pazzaglia UE, Bonaspetti G, Ranchetti F, Bettinsoli P (2008) A model of the intracortical vascular system of long bones and of its organization: an experimental study in rabbit femur and tibia. J Anat 213:183–193

    Article  PubMed  Google Scholar 

  24. Pazzaglia UE, Marchese M, Spagnuolo F, Superti G, Zarattini G (2012) Growth and shape modeling of the rabbit tibia. Study of the dynamics of the developing skeleton. Anat Histol Embryol 41:217–226

    Article  PubMed  CAS  Google Scholar 

  25. Pazzaglia UE, Congiu T, Franzetti E, Marchese M, Spagnuolo F, Di Mascio L, Zarattini G (2012) A model of osteoblast–osteocyte kinetics in development of secondary osteons in rabbits. J Anat 220:372–383

    Article  PubMed  Google Scholar 

  26. Robling AG, Stout SD (1999) Morphology of the drifting osteon. Cells Tissues Organs 164:192–204

    Article  PubMed  CAS  Google Scholar 

  27. Sedlin ED, Frost HM, Villanueva AR (1963) The eleventh rib biopsy in the study of metabolic bone disease. Henry Ford Hosp Med Bull 11:217

    PubMed  CAS  Google Scholar 

  28. Epker BN, Frost HM (1965) A histological study of remodeling at the periosteal, haversian canal, cortical endosteal, and trabecular endosteal surface in human rib. Anat Rec 152:129–135

    Article  PubMed  CAS  Google Scholar 

  29. Jaworski ZFG, Meunier P, Frost HM (1972) Observations on two types of resorption cavities in human lamellar cortical bone. Clin Orthop Relat Res 83:279–285

    Article  PubMed  CAS  Google Scholar 

  30. Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for significant traffic in adult human bone. J Cell Biochem 55:273–286

    Article  PubMed  CAS  Google Scholar 

  31. Jones SJ, Glorieux FH, Travers R, Boyde A (1999) The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int 64:8–17

    Article  PubMed  CAS  Google Scholar 

  32. Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in osteogenesis imperfect mouse model studied by small-angle X-ray scattering. J Clin Invest 97:396–402

    Article  PubMed  CAS  Google Scholar 

  33. Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfect mouse model (oim) shows reduced resistance against tensile stresses. J Clin Invest 100:40–45

    Article  PubMed  CAS  Google Scholar 

  34. Grabner B, Landis WJ, Roschger P, Rinnerthaler S, Peterlik H, Klaushofer K, Fratzl P (2001) Age- and genotype-dependence of bone material properties in the osteogenesis imperfect murine model (oim). Bone 29:453–457

    Article  PubMed  CAS  Google Scholar 

  35. Stewart TL, Roschger P, Misof BM, Mann V, Fratzl P, Klaushofer K, Aspden R, Ralston SH (2005) Association of COLIA1 Sp1 alleles with defective bone nodule formation in vitro and abnormal mineralization in vivo. Calcif Tissue Int 77:113–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funds of the Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy. The SEM study was carried out with the contribution of the Centro Grandi Strumenti of Insubria University (Varese, Italy). The authors acknowledge the contribution of the Scientific Committee of Fondazione Mario Boni in planning the study and drafting the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ugo E. Pazzaglia or Luigi Magnano.

Additional information

The authors state they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazzaglia, U.E., Congiu, T., Brunelli, P.C. et al. The Long Bone Deformity of Osteogenesis Imperfecta III: Analysis of Structural Changes Carried Out with Scanning Electron Microscopic Morphometry. Calcif Tissue Int 93, 453–461 (2013). https://doi.org/10.1007/s00223-013-9771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9771-1

Keywords

Navigation