Skip to main content

Advertisement

Log in

Regulation of In Vitro Vascular Calcification by BMP4, VEGF and Wnt3a

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vascular calcification is a common clinical complication of cardiovascular disease, diabetes and end-stage renal failure, associated with significant morbidity and mortality. In this study we demonstrate that factors secreted by the hypertrophic chondrocytes induce matrix mineralization and osteoblastic transformation in cultured mouse vascular smooth muscle cells (VSMCs). In addition, these factors render VSMCs responsive to BMP4 and Wnt3a ligands. Neither BMP-4 nor Wnt3a could induce mineralization in short-term (up to 8 days) cultures of primary mouse VSMCs. However, both ligands act synergistically with the chondrocyte-conditioned medium causing a further increase in VSMC calcification. Finally, we show that commitment of VSMCs towards the BMP-regulated mineralization can be induced by the chondrocyte-secreted bone anabolic factor VEGF. In addition, expression profiling suggests a novel role in vascular calcification for the matrix proteins previously known to regulate bone formation and mineralization (including MMP3, fibulin, 11betahydroxysteroid dehydrogenase 1 and retinoic acid receptor responder 2). The results of this study may contribute to further understanding of the cellular mechanisms responsible for vascular calcification and provide important information for the treatment of this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Speer MY, Giachelli CM (2004) Regulation of cardiovascular calcification. Cardiovasc Pathol 13:63–70

    Article  PubMed  CAS  Google Scholar 

  2. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, Schinke T, Karsenty G, Giachelli CM (2001) Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res 89:1147–1154

    Article  PubMed  CAS  Google Scholar 

  3. Giachelli CM, Speer MY, Li X, Rajachar RM, Yang H (2005) Regulation of vascular calcification: roles of phosphate and osteopontin. Circ Res 96:717–722

    Article  PubMed  CAS  Google Scholar 

  4. Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696

    Article  PubMed  CAS  Google Scholar 

  5. Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM (2002) Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation 106:3044–3050

    Article  PubMed  CAS  Google Scholar 

  6. Shao JS, Cai J, Towler DA (2006) Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol 26:1423–1430

    Article  PubMed  CAS  Google Scholar 

  7. Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM (2006) Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 260:192–210

    Article  PubMed  CAS  Google Scholar 

  8. Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1161–1170

    Article  PubMed  CAS  Google Scholar 

  9. Hruska KA, Mathew S, Saab G (2005) Bone morphogenetic proteins in vascular calcification. Circulation 97:105–114

    Article  CAS  Google Scholar 

  10. Bostrom K, Watson KE, Horn S, Wortham C, Demer LL (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    Article  PubMed  CAS  Google Scholar 

  11. Zebboudj AF, Imura M, Bostrom K (2002) Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 277:4388–4394

    Article  PubMed  CAS  Google Scholar 

  12. van Gijn ME, Daemen MJ, Smits JF, Blankesteijn WM (2006) The wnt-frizzled cascade in cardiovascular disease. Cardiovasc Res 55:16–24

    Article  Google Scholar 

  13. Shao JS, Pingsterhaus JM, Cheng SL, Charlton-Kachigian N, Loewy AP, Towler DA (2005) Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115:1210–1220

    Article  PubMed  CAS  Google Scholar 

  14. Rajamannan NM, Nealis TB, Subramaniam M, Pandya S, Stock SR, Ignatiev CI, Sebo TJ, Rosengart TK, Edwards WD, McCarthy PM, Bonow RO, Spelsberg TC (2005) Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation 111:3296–3301

    Article  PubMed  CAS  Google Scholar 

  15. Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842–1853

    Article  PubMed  CAS  Google Scholar 

  16. King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003) Kruppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem 278:11661–11669

    Article  PubMed  CAS  Google Scholar 

  17. Wang X, Adhikari N, Li Q, Hall JL (2004) LDL receptor-related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 287:H2376–H2383

    Article  PubMed  CAS  Google Scholar 

  18. Wang Z, Shu W, Lu MM, Morrisey EE (2005) Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol Cell Biol 25:5022–5030

    Article  PubMed  CAS  Google Scholar 

  19. Nurminskaya M, Magee C, Faverman L, Linsenmayer TF (2003) Chondrocyte-derived transglutaminase promotes maturation of preosteoblasts in periosteal bone. Dev Biol 263:139–152

    Article  PubMed  CAS  Google Scholar 

  20. Castellot JJ Jr., Favreau LV, Karnovsky MJ, Rosenberg RD (1982) Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J Biol Chem 257(19):11256–11260

    PubMed  CAS  Google Scholar 

  21. Hay E, Hott M, Graulet AM, Lomri A, Marie PJ (1999) Effects of bone morphogenetic protein-2 on human neonatal calvaria cell differentiation. J Cell Biochem 72:81–93

    Article  PubMed  CAS  Google Scholar 

  22. Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 95:827–839

    Article  PubMed  CAS  Google Scholar 

  23. Li Y, Chen J, Lu W, McCormick LM, Wang J, Bu G (2005) Mesd binds to mature LDL-receptor-related protein-6 and antagonizes ligand binding. J Cell Sci 118:5305–5314

    Article  PubMed  CAS  Google Scholar 

  24. Hochberg BY (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818

    Article  PubMed  CAS  Google Scholar 

  25. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494

    Article  PubMed  CAS  Google Scholar 

  26. Moe SM, Chen NX (2004) Pathophysiology of vascular calcification in chronic kidney disease. Cardiovasc Res 95:560–567

    CAS  Google Scholar 

  27. Wozniak M, Fausto A, Carron CP, Meyer DM, Hruska KA (2000) Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of αvβ3-integrin expression. J Bone Miner Res 15:1731–1745

    Article  PubMed  CAS  Google Scholar 

  28. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 17:101–110

    Article  PubMed  CAS  Google Scholar 

  29. Ding HT, Wang CG, Zhang TL, Wang K (2006) Fibronectin enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells via ERK pathway. J Cell Biochem 99:1343–1352

    Article  PubMed  CAS  Google Scholar 

  30. Patel S, Tsang J, Harbers GM, Healy KE, Li S (2007) Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. J Biomed Mater Res A

  31. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  PubMed  CAS  Google Scholar 

  32. Jeziorska M (2001) Transforming growth factor-betas and CD105 expression in calcification and bone formation in human atherosclerotic lesions. Z Kardiol 90:23–26

    Article  PubMed  Google Scholar 

  33. Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759

    Article  PubMed  CAS  Google Scholar 

  34. Komori T (2000) A fundamental transcription factor for bone and cartilage. Biochem Biophys Res Commun 276:813–816

    Article  PubMed  CAS  Google Scholar 

  35. Hunt JL, Fairman R, Mitchell ME, Carpenter JP, Golden M, Khalapyan T, Wolfe M, Neschis D, Milner R, Scoll B, Cusack A, Mohler ER (2002) Bone formation in carotid plaques: a clinicopathological study. Stroke 33:1214–1219

    Article  PubMed  Google Scholar 

  36. Mohler ER III, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    PubMed  Google Scholar 

  37. Archacki SR, Angheloiu G, Tian XL, DiPaola N, Shen GQ, Moravec C, Ellis S, Topol EJ, Wang Q (2003) Identification of new genes differentially expressed in coronary artery disease by expression profiling. Proc Natl Acad Sci USA 15:65–74

    CAS  Google Scholar 

  38. Bini A, Mann KG, Kudryk BJ, Schoen FJ (1999) Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler Thromb Vasc Biol 19:1852–1861

    PubMed  CAS  Google Scholar 

  39. O’Brien KD, Olin KL, Alpers CE, Chiu W, Ferguson M, Hudkins K, Wight TN, Chait A (1998) Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 98:519–527

    PubMed  CAS  Google Scholar 

  40. Fischer JW, Steitz SA, Johnson PY, Burke A, Kolodgie F, Virmani R, Giachelli C, Wight TN (2004) Decorin promotes aortic smooth muscle cell calcification and colocalizes to calcified regions in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 24:2391–2396

    Article  PubMed  CAS  Google Scholar 

  41. Onda M, Ishiwata T, Kawahara K, Wang R, Naito Z, Sugisaki Y (2002) Expression of lumican in thickened intima and smooth muscle cells in human coronary atherosclerosis. Exp Mol Pathol 72:142–149

    Article  PubMed  CAS  Google Scholar 

  42. Van Eck M, Zimmermann R, Groot PH, Zechner R, Van Berkel TJ (2000) Role of macrophage-derived lipoprotein lipase in lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 20:E53–E62

    PubMed  Google Scholar 

  43. Strom A, Olin AI, Aspberg A, Hultgardh-Nilsson A (2006) Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovasc Res 69:755–763

    Article  PubMed  CAS  Google Scholar 

  44. Wada T, McKee MD, Steitz SA, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178

    PubMed  CAS  Google Scholar 

  45. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  PubMed  CAS  Google Scholar 

  46. Eijken M, Koedam M, van Driel M, Buurman CJ, Pols HA, van Leeuwen JP (2006) The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Mol Cell Endocrinol 248:87–93

    Article  PubMed  CAS  Google Scholar 

  47. Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF (2004) Expression and function of periostin-isoforms in bone. J Cell Biochem 92:1044–1061

    Article  PubMed  CAS  Google Scholar 

  48. Behnam K, Murray SS, Brochmann EJ (2006) BMP stimulation of alkaline phosphatase activity in pluripotent mouse C2C12 cells is inhibited by dermatopontin, one of the most abundant low molecular weight proteins in demineralized bone matrix. Connect Tissue Res 47:271–277

    Article  PubMed  CAS  Google Scholar 

  49. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244

    Article  PubMed  CAS  Google Scholar 

  50. Kushiya F, Wada H, Sakakura M, Mori Y, Gabazza EC, Nishikawa M, Nobori T, Noguchi M, Izumi K, Shiku H (2003) Atherosclerotic and hemostatic abnormalities in patients undergoing hemodialysis. Clin Appl Thromb Hemost 9:53–60

    Article  PubMed  Google Scholar 

  51. Lindner V, Wang Q, Conley BA, Friesel RE, Vary CP (2005) Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol 25:77–83

    PubMed  CAS  Google Scholar 

  52. Wang W, Xu J, Du B, Kirsch T (2005) Role of the progressive ankylosis gene (ank) in cartilage mineralization. Mol Cell Biol 25:312–323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Nurminskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhaylova, L., Malmquist, J. & Nurminskaya, M. Regulation of In Vitro Vascular Calcification by BMP4, VEGF and Wnt3a. Calcif Tissue Int 81, 372–381 (2007). https://doi.org/10.1007/s00223-007-9073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9073-6

Keywords

Navigation