Skip to main content
Log in

Cortical Bone Histomorphometry of the Iliac Crest in Normal Black and White South African Adults

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Fragility fracture rates in South African blacks (B) are lower than in whites (W). Since bone strength in many parts of the skeleton depends mainly on cortical bone, we examined iliac crest cortical bone from 97 B (49 male, 48 female) aged 22–80 and 111 W (60 male, 51 female) aged 21–84 histomorphometrically for differences between B and W and effects of age. B had thicker (P = 0.02) and less porous (P = 0.0007) cortices, fewer haversian (H) osteons (P < 0.0001), and greater endocortical (Ec) wall thickness (P < 0.0001). B also had thicker H (P = 0.0005) and Ec osteoid seams (P < 0.0001); greater Ec osteoid surface (P = 0.0005), Ec mineral apposition rate (P < 0.0001), and Ec bone formation rate (P = 0.038); and lower H (P = 0.0002) and Ec eroded surfaces (P = 0.029). Some of the differences were already present in subjects aged 21–30 years. Although cortical structure deteriorated with age in B and W, after age 40 Ec wall thickness declined only in W. Greater Ec mineral apposition and bone formation rates, i.e., greater osteoblast efficiency at the cellular and tissue levels, suggest better Ec bone preservation that may contribute to lower fragility fracture rates in B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson DA, Pettifor JM, Barondess DA, Cody DD, Uusi-Rasi K, Beck TJ (2004) Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J Bone Miner Res 19:560–565

    Article  PubMed  Google Scholar 

  2. Solomon L (1968) Osteoporosis and fracture of the femoral neck in the South African Bantu. J Bone Joint Surg Br 50:2–13

    PubMed  CAS  Google Scholar 

  3. Dent CE, Engelbrecht HE, Godfrey RC (1968) Osteoporosis of lumbar vertebrae and calcification of abdominal aorta in women living in Durban. Br Med J 4:76–79

    Article  PubMed  CAS  Google Scholar 

  4. Aspray TJ, Prentice A, Cole TJ, Sawo Y, Reeve J, Francis RM (1996) Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Gambian women. J Bone Miner Res 11:1019–1025

    PubMed  CAS  Google Scholar 

  5. Daniels ED, Pettifor JM, Schnitzler CM, Russell SW, Patel DN (1995) Ethnic differences in bone density in female South African nurses. J Bone Miner Res 10:359–367

    PubMed  CAS  Google Scholar 

  6. Schnitzler CM, Pettifor JM, Mesquita JM, Bird MDT, Schnaid E, Smyth AE (1990) Histomorphometry of iliac crest bone in 346 normal black and white South African adults. Bone Miner 10:183–199

    Article  PubMed  CAS  Google Scholar 

  7. Han Z-H, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1996) Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res 11:1967–1975

    PubMed  CAS  Google Scholar 

  8. Järvinen LN, Sievänen H, Jokihaara J, Einhorn TA (2005) Revival of bone strength: the bottom line. J Bone Miner Res 20:717–720

    Article  PubMed  Google Scholar 

  9. Bostrom MPG, Boskey A, Kaufman JK, Einhorn TA (2000) Form and function of bone. In: Buckwalter JA, Einhorn TA, Simon SR (eds), Orthopedic Basic Science. American Academy of Orthopedic Surgeons, Rosemont, IL, pp 319–369

    Google Scholar 

  10. Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T (2002) Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone 31:351–358

    Article  PubMed  CAS  Google Scholar 

  11. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16

    Article  PubMed  CAS  Google Scholar 

  12. Han Z-H, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1997) Effect of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 12:498–508

    Article  PubMed  CAS  Google Scholar 

  13. Parisien M, Cosman F, Morgan D, Schnitzer M, Liang X, Nieves J, Forese L, Luckey M, Meier D, Shen V, Lindsay R, Dempster DW (1997) Bone histomorphometric assessment of bone mass, structure and remodeling: comparison between healthy black and white premenopausal women. J Bone Miner Res 12:948–957

    Article  PubMed  CAS  Google Scholar 

  14. Eyberg CJ, Pettifor JM, Moodley G (1986) Dietary calcium intake in rural black South African children. The relationship between calcium intake and calcium nutritional status. Hum Nutr Clin Nutr 40C:69–74

    Google Scholar 

  15. Heaney RP (1996) Nutrition and risk for osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds), Osteoporosis. Academic Press, San Diego, pp 483–509

    Google Scholar 

  16. Daniels ED, Pettifor JM, Schnitzler CM, Moodley GP, Zachen D (1997) Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporosis Int 7:105–112

    Article  CAS  Google Scholar 

  17. Melsen F, Mosekilde L (1981) The role of bone biopsy in the diagnosis of metabolic bone disease. Orthop Clin North Am 12:571–602

    PubMed  CAS  Google Scholar 

  18. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  19. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    Article  PubMed  CAS  Google Scholar 

  20. Keshawarz NM, Recker RR (1984) Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res 5:223–228

    Article  PubMed  CAS  Google Scholar 

  21. Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde Le, Melsen F (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone Miner 12:101–112

    Article  PubMed  CAS  Google Scholar 

  22. Loveridge N, Power J, Reeve J, Boyde A (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  23. Yeni YN, Norman TL (2000) Fracture toughness of human femoral neck: effect of microstructure, composition and age. Bone 26:499–504

    Article  PubMed  CAS  Google Scholar 

  24. Mow VC, Flatow EL, Ateshian GA (2000) Biomechanics. In: Buckwalter JA, Einhorn TA, Simon SR (eds), Orthopaedic Basic Science, 2nd ed. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 133–180

    Google Scholar 

  25. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    Article  PubMed  CAS  Google Scholar 

  26. Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95

    Article  PubMed  CAS  Google Scholar 

  27. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    Article  PubMed  CAS  Google Scholar 

  28. Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37:10–15

    Article  PubMed  Google Scholar 

  29. Akus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  CAS  Google Scholar 

  30. Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  PubMed  Google Scholar 

  31. Villanueva AR, Mathews CHE, Parfitt AM (1981) Relationship between the size and shape of osteoblasts and the width of osteoid seams in bone. In: Takahashi H (ed), The Second Japanese Workshop on Histomorphometry. University School of Medicine, Niigata, pp 191–196

    Google Scholar 

  32. Bell KL, Loveridge N, Power J, Rushton N, Reeve J (1999) Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporosis Int 10:248–257

    Article  CAS  Google Scholar 

  33. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    Article  PubMed  CAS  Google Scholar 

  34. Arlot ME, Delmas PD, Chappard D, Meunier PJ (1990) Trabecular and endocortical bone remodeling in postmenopausal osteoporosis: comparison with normal postmenopausal women. Osteoporosis Int 1:41–49

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by the Medical Research Council of South Africa and the University of the Witwatersrand. We thank Dr. P. Becker from the MRC Biostatistics Unit for statistical advice. We acknowledge the inclusion of bone biopsies from Drs. S. L. Biddulph and E. Schnaid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Schnitzler.

Appendix

Appendix

Formulae for the calculation of derived dynamic variables:

  • H mineralizing surface: H.MS/BS (%) = H.dLS/BS + ½H.sLS/BS

  • H bone formation rate: H.BFR/BS (μm3/μm2/year) = H.MAR * (H.dLS/BS + ½H.sLS/BS) * 3.65

  • H adjusted apposition rate: H.Aj.AR (μm/day) = H.MAR * (H.dLS/BS + ½H.sLS/BS)/(H.OS/BS)

  • H mineralization lag time: Mlt (days) = H.O.Th/H.Aj.AR

  • H activation frequency: H.Ac.f (n/year) = (H.BFR/BS)/H.W.Th

  • Ec mineralizing surface: Ec.MS/BS (%) = Ec.dLS/BS + ½Ec.sLS/BS

  • Ec bone formation rate: Ec.BFR/BS (μm3/μm2/year) = Ec.MAR * (Ec.dLS/BS + ½Ec.sLS/BS) * 3.65

  • Ec adjusted apposition rate: Ec.Aj.AR (μm/day) = Ec.MAR * (Ec.dLS/BS + ½Ec.sLS/BS)/(Ec.OS/BS)

  • Ec mineralization lag time: Ec.Mlt (days) = Ec.O.Th/Ec.Aj.AR

  • Ec activation frequency: Ec.Ac.f (n/year) = (Ec.BFR/BS)/Ec.W.Th

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzler, C.M., Mesquita, J.M. Cortical Bone Histomorphometry of the Iliac Crest in Normal Black and White South African Adults. Calcif Tissue Int 79, 373–382 (2006). https://doi.org/10.1007/s00223-006-0053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0053-z

Keywords

Navigation