Skip to main content
Log in

Time course of changes in corticospinal excitability induced by motor imagery during action observation combined with peripheral nerve electrical stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

While previous studies assessed corticospinal excitability changes during and after motor imagery (MI) or action observation (AO) combined with peripheral nerve electrical stimulation (ES), we examined, for the first time, the time course of corticospinal excitability changes for MI during AO combined with ES (AO–MI + ES) using transcranial magnetic stimulation to measure motor evoked potentials (MEPs) in healthy individuals. Fourteen healthy volunteers participated in the following three sessions on different days: AO–MI alone, ES alone, and AO–MI + ES. In the AO–MI task, participants imagined squeezing and relaxing a ball, along with the respective actions shown in a movie, while passively holding the ball. We applied ES (intensity, 90% of the motor threshold) to the ulnar nerve at the wrist, which innervates the first dorsal interosseous (FDI) muscle. We assessed the FDI muscle MEPs at baseline and after every 5 min of the task for a total of 20 min. Additionally, participants completed the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) at the beginning of the experiment. Compared to baseline, AO–MI + ES significantly increased corticospinal excitability after 10 min, while AO–MI or ES alone had no effect on corticospinal excitability after 20 min. Moreover, the AO–MI + ES-induced cortical excitability changes were correlated with the VMIQ-2 scores for visual and kinaesthetic imagery. Collectively, our findings indicate that AO–MI + ES induces cortical plasticity earlier than does AO–MI or ES alone and that an individual’s imagery ability plays an important role in inducing cortical excitability changes following AO–MI + ES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas AL, Lucas MF, Teixeira S, Paes F, Velasques B, Ribeiro P, Nardi AE, Machado S (2011) Motor imagery and stroke neurorehabilitation: an overview of basic concepts and therapeutic effects. Am J Neurosci 2:59–64

    Google Scholar 

  • Berends HI, Wolkorte R, Ijzerman MJ, van Putten MJ (2013) Differential cortical activation during observation and observation-and-imagination. Exp Brain Res 229:337–345

    Article  CAS  PubMed  Google Scholar 

  • Bisio A, Avanzino L, Gueugneau N, Pozzo T, Ruggeri P, Bove M (2015a) Observing and perceiving: a combined approach to induce plasticity in human motor cortex. Clin Neurophysiol 126:1212–1220

    Article  PubMed  Google Scholar 

  • Bisio A, Avanzino L, Lagravinese G, Biggio M, Ruggeri P, Bove M (2015b) Spontaneous movement tempo can be influenced by combining action observation and somatosensory stimulation. Front Behav Neurosci 9:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisio A, Avanzino L, Biggio M, Ruggeri P, Bove M (2017) Motor training and the combination of action observation and peripheral nerve stimulation reciprocally interfere with the plastic changes induced in primary motor cortex excitability. Neuroscience 348:33–40

    Article  CAS  PubMed  Google Scholar 

  • Bonassi G, Biggio M, Bisio A, Ruggeri P, Bove M, Avanzino L (2017) Provision of somatosensory inputs during motor imagery enhances induced plasticity in human motor cortex. Sci Rep 7:9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun SM, Beurskens AJ, Borm PJ, Schack T, Wade DT (2006) The effects of mental practice in stroke rehabilitation: a systematic review. Arch Phys Med Rehabil 87:842–852

    Article  PubMed  Google Scholar 

  • Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Chipchase LS, Schabrun SM, Hodges PW (2011) Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol 122:456–463

    Article  CAS  PubMed  Google Scholar 

  • Corbet T, Iturrate I, Pereira M, Perdikis S, Millán JDR (2018) Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance. Neuroimage 176:268–276

    Article  PubMed  Google Scholar 

  • de Vries S, Mulder T (2007) Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med 39:5–13

    Article  PubMed  Google Scholar 

  • de Kroon JR, Ijzerman MJ, Chae J, Lankhorst GJ, Zilvold G (2005) Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med 37:65–74

    Article  PubMed  Google Scholar 

  • Eaves DL, Riach M, Holmes PS, Wright DJ (2016) Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Neurosci 10:514

    Article  PubMed  PubMed Central  Google Scholar 

  • Facchini S, Muellbacher W, Battaglia F, Boroojerdi B, Hallett M (2002) Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand 105:146–151

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Kasashima Y, Honaga K, Muraoka Y, Tsuji T, Osu R, Hase K, Masakado Y, Liu M (2009) Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabil Neural Repair 23:125–132

    Article  PubMed  Google Scholar 

  • Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2009) Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 30:2157–2172

    Article  PubMed  Google Scholar 

  • Hanakawa T, Immisch I, Toma L, Dimyan MA, Van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002

    Article  PubMed  Google Scholar 

  • Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18:2775–2788

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong IK, Choi JB, Lee JH (2012) Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke 43:2506–2509

    Article  PubMed  Google Scholar 

  • Imazu S, Sugio T, Tanaka S, Inui T (2007) Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex 43:301–307

    Article  PubMed  Google Scholar 

  • Jeannerod M (1995) Mental imagery in the motor context. Neuropsychologia 33:1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Kaneko F, Hayami T, Aoyama T, Kizuka T (2014) Motor imagery and electrical stimulation reproduce corticospinal excitabilities at levels similar to voluntary muscle contraction. J Neuroeng Rehabil 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneko F, Shibata E, Hayami T, Nagahata K, Aoyama T (2016) The association of motor imagery and kinesthetic illusion prolongs the effect of transcranial direct current stimulation on corticospinal tract excitability. J Neuroeng Rehabil 13:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawakami M, Fujiwara T, Ushiba J, Nishimoto A, Abe K, Honaga K, Nishimura A, Mizuno K, Kodama M, Masakado Y, Liu M (2016) A new therapeutic application of brain-machine interface (BMI) training followed by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy for patients with severe hemiparetic stroke: a proof of concept study. Restor Neurol Neurosci 34:789–797

    PubMed  Google Scholar 

  • Keysers C, Gazzola V (2010) Social neuroscience: mirror neurons recorded in humans. Curr Biol 20:R353–R354

    Article  CAS  PubMed  Google Scholar 

  • Khaslavskaia S, Sinkjaer T (2005) Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp Brain Res 162:497–502

    Article  PubMed  Google Scholar 

  • Lacourse MG, Orr EL, Cremer SC, Cohen MJ (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27:505–519

    Article  PubMed  Google Scholar 

  • Lafleur MF, Jackson PL, Malouin F, Richards CL, Evans AC, Doyon J (2002) Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements. Neuroimage 16:142–157

    Article  PubMed  Google Scholar 

  • Lotze M, Halsband U (2007) Motor imagery. J Physiol Paris 99:386–395

    Article  Google Scholar 

  • Meng HJ, Pi YL, Liu K, Cao N, Wang YQ, Wu Y, Zhang J (2018) Differences between motor execution and motor imagery of grasping movements in the motor cortical excitatory circuit. PeerJ 6:e5588

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuguchi N, Sakamoto M, Muraoka T, Moriyama N, Nakagawa K, Nakata H, Kanosue K (2012) Influence of somatosensory input on corticospinal excitability during motor imagery. Neurosci Lett 514:127–130

    Article  CAS  PubMed  Google Scholar 

  • Mouthon A, Ruffieux J, Wälchli M, Keller M, Taube W (2015) Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Neuroscience 303:535–543

    Article  CAS  PubMed  Google Scholar 

  • Nedelko V, Hassa T, Hamzei F, Schoenfeld MA, Dettmers C (2012) Action imagery combined with action observation activates more corticomotor regions than action observation alone. J Neurol Phys Ther 36:182–188

    Article  PubMed  Google Scholar 

  • Okuyama K, Ogura M, Kawakami M, Tsujimoto K, Okada K, Miwa K, Takahashi Y, Abe K, Tanabe S, Yamaguchi T, Liu M (2018) Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results. Ther Adv Neurol Disord 11:1756286418804785

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    Article  CAS  PubMed  Google Scholar 

  • Roberts R, Callow N, Hardy L, Markland D, Bringer J (2008) Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire. J Sport Exerc Psychol 30:200–221

    Article  PubMed  Google Scholar 

  • Saito K, Yamaguchi T, Yoshida N, Tanabe S, Kondo K, Sugawara K (2013) Combined effect of motor imagery and peripheral nerve electrical stimulation on the motor cortex. Exp Brain Res 227:333–342

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD, Steyvers M, Levin O, Swinnen SP (2006) Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 168:157–164

    Article  PubMed  Google Scholar 

  • Sugawara K, Yamaguchi T, Tanabe S, Suzuki T, Saito K, Higashi T (2014) Time-dependent changes in motor cortical excitability by electrical stimulation combined with voluntary drive. Neuroreport 25:404–409

    Article  PubMed  Google Scholar 

  • Takahashi Y, Fujiwara T, Yamaguchi T, Kawakami M, Mizuno K, Liu M (2017) The effects of patterned electrical stimulation combined with voluntary contraction on spinal reciprocal inhibition in healthy individuals. Neuroreport 28:434–438

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Fujiwara T, Yamaguchi T, Matsunaga H, Kawakami M, Honaga K, Mizuno K, Liu M (2018) Voluntary contraction enhances spinal reciprocal inhibition induced by patterned electrical stimulation in patients with stroke. Restor Neurol Neurosci 36:99–105

    PubMed  Google Scholar 

  • Villiger M, Estevez N, Hepp-Reymond MC, Kiper D, Kollias SS, Eng K, Hotz-Boendermaker S (2013) Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements. PLoS One 8:e72403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt S, Rienzo FD, Collet C, Collins A, Guillot A (2013) Multiple roles of motor imagery during action observation. Front Hum Neurosci 7:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward NS, Cohen LG (2004) Mechanisms underlying recovery of motor function after stroke. Arch Neurol 61:1844–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams J, Pearce AJ, Loporto M, Morris T, Holmes PS (2012) The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behav Brain Res 226:369–375

    Article  PubMed  Google Scholar 

  • Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345

    Article  PubMed  Google Scholar 

  • Wright DJ, Williams J, Holmes PS (2014) Combined action observation and imagery facilitates corticospinal excitability. Front Hum Neurosci 8:951

    PubMed  PubMed Central  Google Scholar 

  • Yahagi S, Shimura K, Kasai T (1996) An increase in cortical excitability with no change in spinal excitability during motor imagery. Percept Mot Skills 83:288–290

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Sugawara K, Tanaka S, Yoshida N, Saito K, Tanabe S, Muraoka Y, Liu M (2012) Real-time changes in corticospinal excitability during voluntary contraction with concurrent electrical stimulation. PLoS One 7:e46122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Fujiwara T, Tsai YA, Tang SC, Kawakami M, Mizuno K, Kodama M, Masakado Y, Liu M (2016) The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res 234:1469–1478

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the Funds for a Grant-in-Aid for Young Scientists (15K16370 and 18K17723) to Tomofumi Yamaguchi and JSPS KAKENHI Grant Number JP16K19521 to Michiyuki Kawakami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomofumi Yamaguchi.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasui, T., Yamaguchi, T., Tanabe, S. et al. Time course of changes in corticospinal excitability induced by motor imagery during action observation combined with peripheral nerve electrical stimulation. Exp Brain Res 237, 637–645 (2019). https://doi.org/10.1007/s00221-018-5454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5454-5

Keywords

Navigation