Skip to main content
Log in

Age-related changes in short-latency motor cortex inhibition

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study examined whether short-latency intracortical inhibition (SICI) and/or facilitation (ICF) changes with ageing, and if this can be attributed to age-related changes in the inhibition and/or corticospinal stimulus–response curves. SICI/ICF was studied in 17 “old” (63.1 ± 4.2 years) and 13 “young” males (20.0 ± 2.0 years) in both hemispheres using a paired-pulse transcranial magnetic stimulation paradigm at four interstimulus intervals (1, 3, 10 and 12 ms). Motor-evoked potentials were recorded from the first dorsal interosseous muscle at rest, with a conditioning intensity set at 5% stimulator output below the active threshold (aMT). Regardless of age, SICI was greater in the left compared with the right hemisphere. SICI was increased in old men at 3 ms in the left hemisphere and at 1 ms in the in both hemispheres, but ICF was not altered. However, aMT, and hence the conditioning stimulus intensity, was higher in old men. Comparisons of pairs of young and old men with the same aMT, and of SICI curves constructed relative to aMT, failed to show any age-related increase in SICI, although age-related changes in aMT accounted for less than 20% of the variability. Corticospinal stimulus–response characteristics did not influence SICI/ICF and appear not to be altered by ageing in men. When measured in resting muscles, SICI/ICF appears unaltered by age. But it remains unknown if, when assessed during movement preparation or movement, there are changes in SICI related to functional motor changes commonly associated with ageing, such as slowing of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson B, Rutledge V (1996) Age and hemisphere effects on dendritic structure. Brain 119:1983–1990

    Article  PubMed  Google Scholar 

  • Bae JS, Sawai S, Misawa S, Kanai K, Isose S, Shibuyam K, Kuwabara S (2008) Effects of age on excitability properties in human motor axons. Clin Neurophysiol 119:2282–2286

    Article  PubMed  Google Scholar 

  • Boroojerdi B, Kopylev L, Battaglia F, Facchini S, Ziemann U, Muellbacher W, Cohen LG (2000) Reproducibility of intracortical inhibition and facilitation using the paired-pulse paradigm. Muscle Nerve 23:1594–1597

    Article  PubMed  CAS  Google Scholar 

  • Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481

    Article  PubMed  Google Scholar 

  • Butefisch CM, Kleiser R, Seitz RJ (2006) Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation. J Physiol Paris 99:437–454

    Article  PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD Model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10

    Article  PubMed  Google Scholar 

  • Cicinelli P, Traversa R, Oliveri M, Palmieri MG, Filippi MM, Pasqualetti P, Rossini PM (2000) Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy human subjects: differences between the right and left hemisphere. Neurosci Lett 288:171–174

    Article  PubMed  CAS  Google Scholar 

  • Civardi C, Cavalli A, Naldi P, Varrasi C, Cantello R (2000) Hemispheric asymmetries of cortico-cortical connections in human hand motor areas. Clin Neurophysiol 111:624–629

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Rothwell JC, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P (1999) Intracortical origin of the short-latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Exp Brain Res 129:494–499

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Mazzone P, Insola A, Pilato F, Saturno E, Accurso A, Tonali P, Rothwell JC (2001a) Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. Exp Brain Res 141:121–127

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001b) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138:268–273

    Article  PubMed  CAS  Google Scholar 

  • Fisher R, Nakamura Y, Bestmann S, Rothwell J, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res V143:240–248

    Article  Google Scholar 

  • Galanopoulou AS (2005) GABAA receptors as broadcasters of sexually differentiating signals in the brain. Epilepsia 46:107–112

    Article  PubMed  CAS  Google Scholar 

  • Gear RW, Gordon NC, Heller PH, Paul S, Miaskowski C, Levine JD (1996) Gender difference in analgesic response to the kappa-opioid pentazocine. Neurosci Lett 205:207–209

    Article  PubMed  CAS  Google Scholar 

  • Gunning-Dixon FM, Raz N (2000) The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14:224–232

    Article  PubMed  CAS  Google Scholar 

  • Hanajima R, Ugawa Y (2000) Intracortical inhibition of the motor cortex in movement disorders. Brain Dev 1:S132–S135

    Article  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y, Ogata K, Kanazawa I (1996) Ipsilateral cortico-cortical inhibition of the motor cortex in various neurological disorders. J Neurol Sci 140:109–116

    Article  PubMed  CAS  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol (Lond) 509:607–618

    Article  CAS  Google Scholar 

  • Hanajima R, Furubayashi T, Iwata NK, Shiio Y, Okabe S, Kanazawa I, Ugawa Y (2003) Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res 151:427–434

    Article  PubMed  Google Scholar 

  • Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol (Lond) 545:153–167

    Article  CAS  Google Scholar 

  • Ilic TV, Jung P, Ziemann U (2004) Subtle hemispheric asymmetry of motor cortical inhibitory tone. Clin Neurophysiol 115:330–340

    Article  PubMed  Google Scholar 

  • Kolb B, Forgie M, Gibb R, Gorny G, Rowntree S (1998) Age, experience and the changing brain. Neurosci Biobehav Rev 22:143–159

    Article  PubMed  CAS  Google Scholar 

  • Kossev AR, Schrader C, Dauper J, Dengler R, Rollnik JD (2002) Increased intracortical inhibition in middle-aged humans; a study using paired-pulse transcranial magnetic stimulation. Neurosci Lett 333:83–86

    Article  PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  CAS  Google Scholar 

  • Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 185:1–1860

    Google Scholar 

  • Liepert J, Schwenkreis P, Tegenthoff M, Malin JP (1997) The glutamate antagonist riluzole suppresses intracortical facilitation. J Neural Transm 104:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Liepert J, Classen J, Cohen LG, Hallett M (1998) Task-dependent changes of intracortical inhibition. Exp Brain Res 118:421–426

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon C, Gilley E, Weis-Mc Nultry A, Simuni T (2005) Pathways mediating abnormal intracortical inhibition in Parkinson’s disease. Ann Neurol 58:516–524

    Article  PubMed  Google Scholar 

  • Mahncke HW, Bronstone A, Merzenich MM (2006) Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 157:81–109

    Article  PubMed  Google Scholar 

  • Manev H, Peričić D (1987) Sex difference in the turnover of GABA in the rat substantia nigra. J Neural Transm 70:321–328

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Haren M, Taylor A, Middleton S, Wittert G, Members of the Florey Adelaide Male Ageing Study (FAMAS) (2007a) Cohort profile: the Florey Adelaide Male Ageing Study (FAMAS). Int J Epidemiol 36:302–306

    Article  PubMed  Google Scholar 

  • Martin SA, Haren MT, Middleton SM, Wittert GA (2007b) The Florey Adelaide Male Ageing Study (FAMAS): design, procedures & participants. BMC Public Health 7

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58:630–635

    PubMed  CAS  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498:817–823

    PubMed  CAS  Google Scholar 

  • Oldfield O (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V (2006) Effects of aging on motor cortex excitability. Neurosci Res 55:74–77

    Article  PubMed  CAS  Google Scholar 

  • Orth M, Snijders AH, Rothwell JC (2003) The variability of intracortical inhibition and facilitation. Clin Neurophysiol 14:2362–2369

    Article  Google Scholar 

  • Pantoni LEa (2005) Impact of age-related cerebral white matter changes on the transition to disability—The LARDIS STUDY: rationale, design and methodology. Neuroepidemiology 24:51–62

    Article  PubMed  Google Scholar 

  • Peinemann A, Lehner C, Conrad B, Siebner HR (2001) Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci Lett 313:33–36

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input-output characteristics. J Physiol (Lond) 546:605–613

    Article  CAS  Google Scholar 

  • Pugh KG, Lipsitz LA (2002) The microvascular frontal-subcortical syndrome of aging. Neurobiol Aging 23:421–431

    Article  PubMed  Google Scholar 

  • Ravizza T, Friedman LK, Moshe SL, Veliskova J (2003) Sex differences in GABAAergic system in rat substantia nigra pars reticulata. Int J Dev Neurosci 21:245–254

    Article  PubMed  CAS  Google Scholar 

  • Reeves S, Bench C, Howard R (2002) Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 17:359–370

    Article  PubMed  CAS  Google Scholar 

  • Ridding M, Inzelberg R, Rothwell JC (1995a) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T (1995b) Changes in the balance between motor cortical excitation and inhibition in focal, task-specific dystonia. J Neurol Neurosurg Psychiatry 59:493–498

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995c) The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 487:541–548

    PubMed  CAS  Google Scholar 

  • Riederer P, Hoyer S (2006) From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm V113:1671–1677

    Article  Google Scholar 

  • Rossini PM, Desiato MT, Caramia MD (1992) Age-related changes of motor-evoked potentials in healthy humans: non-invasive evaluation of central and peripheral motor tracts excitability and conductivity. Brain Res 593:14–19

    Article  PubMed  CAS  Google Scholar 

  • Sachdev PS, Wen W, Christensen H, Jorm AF (2005) White matter hyperintensities are related to physical disability and poor motor function. J Neurol Neurosurg Psychiatry 76:362–367

    Article  PubMed  CAS  Google Scholar 

  • Sale M, Semmler J (2005) Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J Physiol 99:1483–1493

    Google Scholar 

  • Silbert LC, Nelson C, Holman S, Eaton R, Oken BS, Lou JS, Kaye JA (2006) Cortical excitability and age-related volumetric MRI changes. Clin Neurophysiol 117:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53:2069–2072

    PubMed  CAS  Google Scholar 

  • Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51:599–603

    Article  PubMed  CAS  Google Scholar 

  • Sommer M, Alfaro A, Rummel M, Speck S, Lang N, Tings T, Paulus W (2006) Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clin Neurophysiol 117:838–844

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2004) Impaired modulation of intracortical inhibition in focal hand dystonia. Cereb Cortex 14:555–561

    Article  PubMed  Google Scholar 

  • Talelli P, Waddingham W, Ewas A, Rothwell J, Ward N (2008) The effect of age on task-related modulation of interhemispheric balance. Exp Brain Res 186:59–66

    Article  PubMed  CAS  Google Scholar 

  • Ward NS (2006) Compensatory mechanisms in the aging motor system. Ageing Res Rev 5:239–254

    Article  PubMed  Google Scholar 

  • Ward NS, Frackowiak RSJ (2003) Age-related changes in the neural correlates of motor performance. Brain 126:873–888

    Article  PubMed  CAS  Google Scholar 

  • Ward NS, Frackowiak RSJ (2006) The functional anatomy of cerebral reorganisation after focal brain injury. J Physiol (Paris) 99:425–436

    Article  Google Scholar 

  • Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171

    Article  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996a) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study [see comments]. Ann Neurol 40:367–378

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496:873–881

    PubMed  CAS  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Sean Martin and the members of the Florey Adelaide Male Ageing Study for their assistance and participation. This work was funded by the National Health and Medical Research Council (NH&MRC) of Australia. AES is a South Australian Department of Health/Faculty of Health Sciences Scholar. JBP is an NH&MRC Peter Doherty Research Fellow. MCR is an NH&MRC Senior Research Fellow.

Conflict of interest statement

None of the authors have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia B. Pitcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.E., Ridding, M.C., Higgins, R.D. et al. Age-related changes in short-latency motor cortex inhibition. Exp Brain Res 198, 489–500 (2009). https://doi.org/10.1007/s00221-009-1945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1945-8

Keywords

Navigation