Skip to main content
Log in

Contralateral and ipsilateral motor activation in visual simple reaction time: a test of the hemispheric coactivation model

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor potentials contralateral versus ipsilateral to the responding hand were examined in a visual simple reaction time (RT) experiment in order to test the hemispheric coactivation model of Miller (Cogn Psychol 49:118–154, 2004). Visual stimuli were presented on the left side of fixation, on the right side, or on both sides, and in the RT task participants had to respond as quickly as possible to the onset of any stimulus. The same stimulus displays were also presented in a counting task, for which participants had merely to count the stimuli. Hemisphere-specific movement-related potentials contralateral and ipsilateral to the responding hand were isolated by subtracting count-task ERPs from RT-task ERPs. Consistent with the hemispheric coactivation model, there was evidence of movement-related ipsilateral positivity as well as contralateral negativity, suggesting that the motor areas of both hemispheres contribute to response initiation in simple RT. The distinction between contralateral and ipsilateral motor activation appears useful in clarifying the roles of the two hemispheres in response initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For simplicity, this description ignores subcortical connections between hemispheres in split-brain individuals, which are in any case too slow to have much impact in typical RT tasks.

  2. The stimulus-related asymmetries could arise either from pure sensory processing of stimuli to the left and right of fixation or from attentional shifts toward the stimulated location of the visual field (Praamstra and Oostenveld 2003), or indeed from a combination of these two sources. Because these two sources of stimulus-related asymmetries are secondary to the present concerns and are confounded in the present studies, I will not pursue this distinction.

  3. Although LRP onset latencies are not the main concern of the present study, they are relevant to the issue of whether redundancy gain speeds motor processes (e.g., Mordkoff et al. 1996). To assess the effects of redundancy on the present stimulus-locked and response-locked LRP onset latencies, these latencies were scored using the jackknife-based methods recommended by Miller et al. (1998), with stimulus-locked and response-locked onsets defined as the points at which the LRPs reached 50 and 90% of their maxima, respectively. Stimulus-locked onset was 11 ms earlier in redundant trials than in single-stimulus trials, but this effect was not statistically reliable (P > 0.1). Response-locked onset was also 11 ms later in redundant trials than in single-stimulus trials, and this effect was reliable, F(1,15) = 9.90, P < 0.01. The significant effect of redundancy on response-locked LRP latency provides support for a motor explanation of at least part of the effect of redundancy on RT, as previously suggested by Giray and Ulrich (1993; but see Miller et al. 2001; Mordkoff et al. 1996; for evidence against a motor component).

References

  • Aizawa H, Mushiake H, Inase M, Tanji J (1990) An output zone of the monkey primary motor cortex specialized for bilateral hand movement. Exp Brain Res 82:219–221

    Article  CAS  PubMed  Google Scholar 

  • Babiloni C, Carducci F, Pizzella V, Indovina I, Romani GL, Rossini PM, Babiloni F (1999) Bilateral neuromagnetic activation of human primary sensorimotor cortex in preparation and execution of unilateral voluntary finger movements. Brain Res 827:234–236

    Article  CAS  PubMed  Google Scholar 

  • Bernard RA, Goran DA, Sakai ST, Carr TH, McFarlane D, Nordell B, Cooper TG, Potchen EJ (2002) Cortical activation during rhythmic hand movements performed under three types of control: an fMRI study. Cogn Affect Behav Neurosci 2:271–281

    CAS  PubMed  Google Scholar 

  • Brázdil M, Roman R, Daniel P, Rektor I (2003) Intracerebral somatosensory event-related potentials: Effect of response type (button pressing versus mental counting) on P3-like potentials within the human brain. Clin Neurophysiol 114:1489–1496

    Article  PubMed  Google Scholar 

  • Brinkman J, Kuypers H (1972) Split-brain monkeys: cerebral control of ipsilateral and contralateral arm, hand, and finger movements. Science 176:535–539

    Article  Google Scholar 

  • Brinkman J, Kuypers H (1973) Cerebral control of contralateral and ipsilateral arm, hand, and finger movements in the split-brain rhesus monkey. Brain 96:653–674

    Article  CAS  PubMed  Google Scholar 

  • Brunia CHM (1987) Brain potentials related to preparation and action. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Erlbaum, Hillsdale, pp 105–130

    Google Scholar 

  • Brunia CHM, Van Boxtel GJM, Speelman JD (2004) The bilateral origin of movement-related potentials preceding unilateral actions. J Psychophysiol 18:140–148

    Article  Google Scholar 

  • Burle B, Vidal F, Tandonnet C, Hasbroucq T (2004) Physiological evidence for response inhibition in choice reaction time tasks. Brain Cogn 56:153–164

    Article  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (1997) Imaging cognition: an empirical review of PET studies with normal subjects. J Cogn Neurosci 9:1–26

    Article  Google Scholar 

  • Carbonnell L, Hasbroucq T, Grapperon J, Vidal F (2004) Response selection and motor areas: a behavioural and electrophysiological study. Clin Neurophysiol 115:2164–2174

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Cohen L, Hallett M (1997) Role of the ipsilateral motor cortex in voluntary movement. Can J Neurol Sci 24:284–291

    CAS  PubMed  Google Scholar 

  • Cisek P, Crammond DJ, Kalaska JF (2003) Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm. J Neurophysiol 89:922–942

    Article  PubMed  Google Scholar 

  • Coles MGH (1989) Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiology 26:251–269

    CAS  PubMed  Google Scholar 

  • Coles MGH, Gratton G, Donchin E (1988) Detecting early communication: using measures of movement-related potentials to illuminate human information processing. Biol Psychol 26:69–89

    Article  CAS  PubMed  Google Scholar 

  • Cook EW III, Miller GA (1992) Digital filtering: background and tutorial for psychophysiologists. Psychophysiology 29:350–367

    PubMed  Google Scholar 

  • Corballis MC (1998) Interhemispheric neural summation in the absence of the corpus callosum. Brain 121:1795–1807

    Article  PubMed  Google Scholar 

  • Corballis MC, Hamm JP, Barnett KJ, Corballis PM (2002) Paradoxical interhemispheric summation in the split brain. J Cogn Neurosci 14:1151–1157

    Article  PubMed  Google Scholar 

  • Corballis MC, Corballis PM, Fabri M (2003) Redundancy gain in simple reaction time following partial and complete callosotomy. Neuropsychologia 42:71–81

    Article  Google Scholar 

  • Deecke L (1978) Functional significance of cerebral potentials preceding voluntary movement. In: Otto DA (ed) Multidisciplinary perspectives in event-related brain potential research. US Environmental Protection Agency, Washington, pp 87–91

    Google Scholar 

  • Deecke L, Kornhuber HH (1977) Cerebral potentials and the initiation of voluntary movement. In: Desmedt JE (ed) Progress in clinical neurophysiology, Vol. 1 Attention, voluntary contraction and event-related cerebral potentials. Karger, Basel, pp 132–150

  • Desoto MC, Fabiani M, Geary DC, Gratton G (2001) When in doubt, do it both ways: brain evidence of the simultaneous activation of conflicting motor responses in a spatial Stroop task. J Cogn Neurosci 13:523–536

    Article  CAS  PubMed  Google Scholar 

  • Donchin E, Gerbrandt LA, Leifer L, Tucker L (1972) Is the contingent negative variation contingent on a motor response? Psychophysiology 9:178–188

    CAS  PubMed  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E (1998) Primary motor cortex is involved in bimanual coordination. Nature 395:274–278

    Article  CAS  PubMed  Google Scholar 

  • Donders FC (1868/1969) Over de snelheid van psychische processen [On the speed of mental processes.] (W. G. Koster, Trans.) Attention and performance II. North-Holland, Amsterdam, pp 412–431 (Original work published 1868). In: Koster WG (ed.) Attention and performance II. North Holland, Amsterdam, pp 412–431

  • Eimer M (1998) The lateralized readiness potential as an on-line measure of central response activation processes. Behav Res Meth Instrum Comput 30:146–156

    Google Scholar 

  • Gerbrandt L (1978) Methodological criteria for the validation of movement-related potentials. In: Otto DA (ed) Multidisciplinary perspectives in event-related brain potential research. US Environmental Protection Agency, Washington, pp 97–104

    Google Scholar 

  • Giray M, Ulrich R (1993) Motor coactivation revealed by response force in divided and focused attention. J Exp Psychol Hum Percept Perform 19:1278–1291

    Article  CAS  PubMed  Google Scholar 

  • Goldring S, Ratcheson R (1972) Human motor cortex: sensory input data from single neuron recordings. Science 175:1493–1495

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214

    Article  CAS  PubMed  Google Scholar 

  • Gratton G, Coles MGH., Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  CAS  PubMed  Google Scholar 

  • Hackley SA, Miller JO (1995). Response complexity and precue interval effects on the lateralized readiness potential. Psychophysiology 32:230–241

    CAS  PubMed  Google Scholar 

  • Harter MR, Aine CJ, Schroeder C (1982) Hemispheric differences in the neural processing of stimulus location and type: effects of selective attention on visual evoked potentials. Neuropsychologia 20:421–438

    Article  CAS  PubMed  Google Scholar 

  • Hasbroucq T, Akamatsu M, Burle B, Bonnet M, Possamaï CA (2000) Changes in spinal excitability during choice reaction time: the H reflex as a probe of information transmission. Psychophysiology 37:385–393

    Article  CAS  PubMed  Google Scholar 

  • Huynh H (1978) Some approximate tests for repeated measurement designs. Psychometrika 43:161–175

    Article  Google Scholar 

  • Iacoboni M, Ptito A, Weekes NY, Zaidel E (2000) Parallel visuomotor processing in the split brain: cortico-subcortical interactions. Brain 123:759–769

    Article  PubMed  Google Scholar 

  • Ikeda A, Lüders HO, Shibasaki H, Collura TF, Burgess RC, Morris III HH, Hamano T (1995) Movement-related potentials associated with bilateral simultaneous and unilateral movements recorded from human supplementary motor area. Electroencephalogr Clin Neurophysiol 95:323–334

    Article  CAS  PubMed  Google Scholar 

  • Jasper HH (1958) The ten-twenty electrode system of the International Federation. EEG Clin Neurophysiol 10:371–375

    Google Scholar 

  • Kim S-G, Ashe J, Hendrich K, Ellerman JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  CAS  PubMed  Google Scholar 

  • Kinsbourne M (2002) The corpus callosum equilibrates the cerebral hemispheres. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT, Cambridge, pp 271–281

    Google Scholar 

  • Kitamura J, Shibasaki H, Takagi A, Nabeshima H, Yamaguchi A (1993) Enhanced negative slope of cortical potentials before sequential as compared to simultaneous extensions of two fingers. Electroencephalogr Clin Neurophysiol 86:176–182

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1996) Fundamentals of human neuropsychology, 4th edn. WH Freeman, New York

    Google Scholar 

  • Kornhuber HH, Deecke L (1965) Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des. Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archives für die gesammte Physiologie 284:1–17

    Article  CAS  Google Scholar 

  • Kutas M, Donchin E (1980) Preparation to respond as manifested by movement-related brain potentials. Brain Res 202:95–115

    Article  CAS  PubMed  Google Scholar 

  • Lecas JC, Requin J, Anger C, Vitton N (1986) Changes in neuronal activity of the monkey precentral cortex during preparation for movement. J Neurophysiol 56:1680–1702

    CAS  PubMed  Google Scholar 

  • Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173

    Article  PubMed  Google Scholar 

  • Libet B (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behav Brain Sci 8:529–566

    Article  Google Scholar 

  • Libet B, Gleason CA, Wright EW Jr, Pearl DK (1983) Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): the unconscious initiation of a freely voluntary act. Brain 106:623–642

    Article  PubMed  Google Scholar 

  • Loveless NE, Sanford AJ (1974) Slow potential correlates of preparatory set. Biol Psychol 1:303–314

    Article  CAS  PubMed  Google Scholar 

  • Loveless NE, Sanford AJ (1975) The impact of warning signal intensity on reaction time and components of the contingent negative variation. Biol Psychol 2:217–226

    Article  CAS  PubMed  Google Scholar 

  • Miller JO (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279

    Article  CAS  PubMed  Google Scholar 

  • Miller JO (2004) Exaggerated redundancy gain in the split brain: a hemispheric coactivation account. Cogn Psychol 49:118–154

    Article  PubMed  Google Scholar 

  • Miller JO, Adam JJ (2006) Redundancy gain with static versus moving hands: test of the hemispheric coactivation model. Acta Psychol 122:1–10

    Article  Google Scholar 

  • Miller JO, Low KA (2001) Motor processes in simple, go/no-go, and choice reaction time tasks: a psychophysiological analysis. J Exp Psychol Hum Percept Perform 27:266–289

    Article  CAS  PubMed  Google Scholar 

  • Miller JO, Van Nes F (2006) Effects of response task and accessory stimuli on redundancy gain: tests of the hemispheric coactivation model. J Exp Psychol Hum Percept Perform (in press)

  • Miller JO, Patterson T, Ulrich R (1998) Jackknife-based method for measuring LRP onset latency differences. Psychophysiology 35:99–115

    Article  CAS  PubMed  Google Scholar 

  • Miller JO, Ulrich R, Lamarre Y (2001) Locus of the redundant-signals effect in bimodal divided attention: a neurophysiological analysis. Percept Psychophys 63:555–562

    CAS  PubMed  Google Scholar 

  • Miniussi C, Girelli M, Marzi CA (1998) Neural site of the redundant target effect: electrophysiological evidence. J Cogn Neurosci 10:216–230

    Article  CAS  PubMed  Google Scholar 

  • Mordkoff JT, Miller JO, Roch AC (1996) Absence of coactivation in the motor component: Evidence from psychophysiological measures of target detection. J Exp Psychol Hum Percept Perform 22:25–41

    Article  CAS  PubMed  Google Scholar 

  • Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39:828–844

    Article  CAS  PubMed  Google Scholar 

  • Neshige R, Lüders H, Shibasaki H (1988) Recording of movement-related potentials from scalp and cortex in man. Brain 111:719–736

    PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Praamstra P, Stegeman DF, Van Oosterom A (2001) Overlap of attention and movement-related activity in lateralized event-related brain potentials. Clin Neurophysiol 112:477–484

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN, Seltzer B (1986) The topography of commissural fibers. In: Leporé F, Ptito M, Jasper HH (eds) Two hemispheres—one brain: functions of the corpus callosum. Alan R. Liss, New York, pp 47–73

    Google Scholar 

  • Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 23:1–73

    Google Scholar 

  • Polich J, Hoffman LD (1998) P300 and handedness: on the possible contribution of corpus callosal size to ERPs. Psychophysiology 35:497–507

    Article  CAS  PubMed  Google Scholar 

  • Polich J, Ellerson PC, Cohen J (1996) P300, stimulus intensity, modality, and probability. Int J Psychophysiol 23:55–62

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S, Zaidel E (1999) Redundancy gains for visual search after complete commissurotomy. Neuropsychology 13:246–258

    Article  CAS  PubMed  Google Scholar 

  • Praamstra P, Oostenveld R (2003) Attention and movement-related motor cortex activation: a high-density EEG study of spatial stimulus-response compatibility. Cogn Brain Res 16:309–322

    Article  CAS  Google Scholar 

  • Praamstra P, Seiss E (2005) The neurophysiology of response competition: motor cortex activation and inhibition following subliminal response priming. J Cogn Neurosci 17:483–493

    Article  PubMed  Google Scholar 

  • Praamstra P, Schmitz F, Freund H-J, Schnitzler A (1999) Magneto-encephalographic correlates of the lateralized readiness potential. Cogn Brain Res 8:77–85

    Article  CAS  Google Scholar 

  • Prescott J (1986) The effects of response parameters on CNV amplitude. Biol Psychol 22:107–135

    Article  CAS  PubMed  Google Scholar 

  • Raab DH (1962) Statistical facilitation of simple reaction times. Trans N Y Acad Sci 24:574–590

    CAS  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Nozawa G, Gazzaniga MS, Hughes HC (1995) Fate of neglected targets: a chronometric analysis of redundant target effects in the bisected brain. J Exp Psychol Hum Percept Perform 21:211–230

    Article  CAS  PubMed  Google Scholar 

  • Roser M, Corballis MC (2003) Interhemispheric neural summation in the split brain: effects of stimulus colour and task. Neuropsychologia 41:830–846

    Article  PubMed  Google Scholar 

  • Rugg MD (1982) Electrophysiological studies. In: Beaumont JG (ed) Divided visual field studies of cerebral organization. Academic, New York, pp 129–146

    Google Scholar 

  • Saron CD, Foxe JJ, Simpson GV, Vaughan HG Jr (2002) Interhemispheric visuomotor activation: spatiotemporal electrophysiology related to reaction time. In: Zaidel E, Iacoboni M (eds) The parallel brain: the cognitive neuroscience of the corpus callosum. MIT, Cambridge, pp. 171–219

    Google Scholar 

  • Saron CD, Foxe JJ, Schroeder CE, Vaughan HG Jr (2003) Complexities of interhemispheric communication in sensorimotor tasks revealed by high-density event-related potential mapping. In: Hugdahl K, Davidson RJ (eds) The asymmetrical brain. MIT, Cambridge, pp 342–408

    Google Scholar 

  • Sartori G, Umiltà C (2000) How to avoid the fallacies of cognitive subtraction in brain imaging. Brain Lang 74:191–212

    Article  CAS  PubMed  Google Scholar 

  • Shedden JM, Nordgaard CL (2001) ERP time course of perceptual and post-perceptual mechanisms of spatial selection. Cogn Brain Res 11:59–75

    Article  CAS  Google Scholar 

  • Shibasaki H (1992) Movement-related cortical potentials. In: Halliday AM (ed) Evoked potentials in clinical testing. Clinical neurology and neurosurgery monographs, 2nd edn. Churchill Livingstone, Edinburgh, pp 523–537

    Google Scholar 

  • Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Mihazaki M, Fukuyama H, Asato R, Konishi J (1993) Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116:1387–1398

    Article  PubMed  Google Scholar 

  • Smid HGOM, Mulder G, Mulder LJM (1987) The continuous flow model revisited: perceptual and motor aspects. In: Johnson Jr RE, Rohrbaugh JW, Parasuraman R (eds) Current trends in event-related potential research. Electroencephalogr Clin Neurophysiol (Suppl. 40). Elsevier, Amsterdam, pp 270–278

  • Tandonnet C, Burle B, Vidal F, Hasbroucq T (2003) The influence of time preparation on motor processes assessed by surface Laplacian estimation. Clin Neurophysiol 114:2376–384

    Article  CAS  PubMed  Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral and bilateral digit movements of the monkey. J Neurophysiol 60:325–343

    CAS  PubMed  Google Scholar 

  • Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058

    CAS  PubMed  Google Scholar 

  • Tomaiuolo F, Ptito M, Marzi CA, Paus T, Ptito A (1997) Blindsight in hemispherectomized patients as revealed by spatial summation across the vertical meridian. Brain 120:795–803

    Article  PubMed  Google Scholar 

  • Toro C, Matsumoto J, Deuschl G, Roth BJ, Hallett M (1993) Source analysis of scalp-recorded movement-related electrical potentials. Electroencephalogr Clin Neurophysiol 86:167–175

    Article  CAS  PubMed  Google Scholar 

  • Trevena JA, Miller JO (2002) Cortical movement preparation before and after a conscious decision to move. Conscious Cogn 11:162–190

    Article  PubMed  Google Scholar 

  • Ulrich R, Miller JO, Schröter H (2006) Testing the race model inequality: an algorithm and computer programs. Behav Res Methods (in press)

  • Ulrich R, Leuthold H, Sommer W (1998) Motor programming of response force and movement direction. Psychophysiology 35:721–728

    Article  CAS  PubMed  Google Scholar 

  • Urbano A, Babiloni C, Onorati P, Babiloni F (1998a) Dynamic functional coupling of high resolution EEG potentials related to unilaterally triggered one-digit movements. Electroencephalogr Clin Neurophysiol 106:477–487

    Article  CAS  PubMed  Google Scholar 

  • Urbano A, Babiloni C, Onorati P, Carducci F, Ambrosini A, Fattorini L, Babiloni F (1998b) Responses of human primary sensorimotor and supplementary motor areas to internally triggered unilateral and simultaneous bilateral one-digit movements. Eur J Neurosci 10:765–767

    Article  CAS  PubMed  Google Scholar 

  • Verleger R, Jaśkowski, P., Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19:165–181

    Article  Google Scholar 

  • Vidal F, Grapperon J, Bonnet M, Hasbroucq T (2003) The nature of unilateral motor commands in between-hand choice tasks as revealed by surface Laplacian estimation. Psychophysiology 40:796–805

    Article  PubMed  Google Scholar 

  • Wascher E, Wauschkuhn B (1996) The interaction of stimulus- and response-related processes measured by event-related lateralizations of the EEG. Electroencephalogr Clin Neurophysiol 99:149–162

    Article  CAS  PubMed  Google Scholar 

  • Wexler BE, Fulbright RK, Lacadie CM, Skudlarski P, Kelz MB, Constable RT, Gore JC (1997) An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging 15:385–396

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Tsuchiya H, Kobayashi S (1994) Electroencephalographic activity associated with shifts of visuospatial attention. Brain 117:553–562

    Article  PubMed  Google Scholar 

  • Yordanova J, Kolev V, Hohnsbein J, Falkenstein M (2004) Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: evidence from high-resolution event-related potentials. Brain 127:351–362

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from The Marsden Fund administered by the Royal Society of New Zealand. I thank Stephen and Erica Atkins for assistance in testing the participants, and Bernhard Hommel, Helmut Leuthold, Stefan Pollmann, Peter Praamstra, Rolf Ulrich, and two anonymous reviewers for constructive comments on earlier versions of the article. Some results of this study were reported at the annual meeting of the Psychonomic Society, Toronto, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J. Contralateral and ipsilateral motor activation in visual simple reaction time: a test of the hemispheric coactivation model. Exp Brain Res 176, 539–558 (2007). https://doi.org/10.1007/s00221-006-0641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0641-1

Keywords

Navigation