Skip to main content
Log in

Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Axonal injury and loss in the corpus callosum (CC) is characteristic of the pathology of multiple sclerosis (MS). Functional magnetic resonance imaging (fMRI) potentially allows neurophysiological consequences of this interhemispheric axonal loss to be defined quantitatively. Here we have used 3T fMRI to study the activation in the contralateral primary sensorimotor cortex and deactivation (mediated by transcallosal tracts) in the homologous ipsilateral region in 14 patients with MS and in 14 matched healthy controls during a simple hand-tapping task. Both healthy controls and MS patients showed similar activation in the motor cortex contralateral to the hand moved, but the patients showed a significantly smaller relative deactivation in the ipsilateral motor cortex (P = 0.002). The difference was accounted for by the sub-group of MS patients who previously had impairment of motor function of the hand tested (MS-phd). The CC of the whole patient group was significantly thinner than for the controls (P = 0.001). Atrophy of the CC was correlated with loss of deactivation for the whole patient group (r = −0.50, P = 0.035), but particularly for MS-phd (r = −0.914, P = 0.004). Interhemispheric physiological inhibition thus is impaired in patients with MS, potentially contributing to impairment of motor control. This work suggests one way in which FMRI monitoring of the transcallosal interactions in motor cortex could become a tool for evaluation of therapies that may enhance function in reversibly impaired pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EDSS:

Expanded disability status scale

EPI:

Echo-planar imaging

fMRI:

Functional MRI

NART:

National adult reading test

TBV:

Total brain volume

TE:

Echo time

TR:

Repetition time

FOV:

Field of view

MS:

Multiple sclerosis

References

  • Allison JD, Meador KJ, Loring DW, Figueroa RE, Wright JC (2000) Functional MRI cerebral activation and deactivation during finger movement. Neurology 54:135–142

    PubMed  CAS  Google Scholar 

  • Au Duong MV, Audoin B, Boulanouar K, Ibarrola D, Malikova I, Confort-Gouny S, Celsis P, Pelletier J, Cozzone PJ, Ranjeva JP (2005) Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab 25(10):1245–1253

    Article  PubMed  Google Scholar 

  • Barkhof FJ, Elton M, Lindeboom J et al (1998) Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study. J Neurol 245:153–158

    Article  PubMed  CAS  Google Scholar 

  • Boecker H, Kleinschmidt A, Requardt M, Hanicke W, Merboldt KD, Frahm J (1994) Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study. Brain 117:1231–1239

    PubMed  Google Scholar 

  • Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci 144:160–170

    Article  PubMed  CAS  Google Scholar 

  • Boroojerdi B, Hungs M, Mull M, Topper R, Noth J (1998) Interhemispheric inhibition in patients with multiple sclerosis. Electroencephalogr Clin Neurophysiol 109:230–237

    Article  PubMed  CAS  Google Scholar 

  • Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(Pt 2):527–37

    PubMed  Google Scholar 

  • Comi G, Filippi M, Martinelli V et al (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115(Suppl):S66–S73

    Article  PubMed  Google Scholar 

  • Dietemann JL, Beigelman C, Rumbach L et al (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30:478–480

    Article  PubMed  CAS  Google Scholar 

  • Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    Article  PubMed  CAS  Google Scholar 

  • Gadea M, Marti-Bonmati L, Arana E, Espert R, Casanova V, Pascual A (2002) Dichotic listening and corpus callosum magnetic resonance imaging in relapsing-remitting multiple sclerosis with emphasis on sex differences. Neuropsychology 16:275–281

    Article  PubMed  Google Scholar 

  • Ge Y, Law M, Johnson G et al (2004) Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. J Magn Reson Imaging 20:1–7

    Article  PubMed  Google Scholar 

  • Hamzei F, Dettmers C, Rzanny R, Liepert J, Buchel C, Weiller C (2002) Reduction of excitability (“inhibition”) in the ipsilateral primary motor cortex is mirrored by fMRI signal decreases. Neuroimage 17:490–496

    Article  PubMed  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  • Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99:14518–14523

    Article  PubMed  CAS  Google Scholar 

  • Leocani L, Colombo B, Magnani G et al (2001) Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement—EEG evidence. Neuroimage 13:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Meyer BU, Roricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369

    Article  PubMed  CAS  Google Scholar 

  • Muller K, Kass-Iliyya F, Reitz M (1997) Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann Neurol 42:705–711

    Article  PubMed  CAS  Google Scholar 

  • Newton JM, Sunderland A, Gowland PA (2005) fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. Neuroimage 24(4):1080–1087

    Article  PubMed  Google Scholar 

  • Oh J, Henry RG, Genain C, Nelson SJ, Pelletier D (2004a) Mechanisms of normal appearing corpus callosum injury related to pericallosal T1 lesions in multiple sclerosis using directional diffusion tensor and 1H MRS imaging. J Neurol Neurosurg.Psychiatry 75:1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Pelletier D, Nelson SJ (2004b) Corpus callosum axonal injury in multiple sclerosis measured by proton magnetic resonance spectroscopic imaging. Arch Neurol 61:1081–1086

    Article  PubMed  Google Scholar 

  • Pantano P, Mainero C, Iannetti GD et al (2002) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 17:1837–1843

    Article  PubMed  Google Scholar 

  • Pelletier J, Suchet L, Witjas T et al (2001) A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 58:105–111

    Article  PubMed  CAS  Google Scholar 

  • Petajan JH, White AT (2000) Motor-evoked potentials in response to fatiguing grip exercise in multiple sclerosis patients. Clin Neurophysiol 111:2188–2195

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Veltman DJ, Ashburner J, Josephs O, Friston KJ (1999) The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. Neuroimage 10:36–44

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Bernardin L, Leo GJ, Ellington L, Ryan SB, Burg LS (1989) Cerebral disconnection in multiple sclerosis. Relationship to atrophy of the corpus callosum. Arch Neurol 46:918–920

    PubMed  CAS  Google Scholar 

  • Reddy H, Narayanan S, Arnoutelis R et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123:2314–2320

    Article  PubMed  Google Scholar 

  • Rocca MA, Gallo A, Colombo B et al (2004) Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. Neuroimage 23:141–147

    Article  PubMed  Google Scholar 

  • Schmierer K, Niehaus L, Roricht S, Meyer BU (2000) Conduction deficits of callosal fibres in early multiple sclerosis. J Neurol Neurosurg Psychiatry 68:633–638

    Article  PubMed  CAS  Google Scholar 

  • Schmierer K, Irlbacher K, Grosse P, Roricht S, Meyer BU (2002) Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology 59:1218–1224

    PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778

    Article  PubMed  Google Scholar 

  • Werhahn KJ, Conforto AB, Kadom N, Hallett M, Cohen LG (2003) Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann Neurol 54:464–472

    Article  PubMed  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.M. is a trainee in the NIH-Oxford Graduate Partnership Programme. P.M.M. is grateful to the MRC (UK) for personal and for core support of the FMRIB Centre. P.M.M. and J.P. jointly thank the MS Society of Great Britain and Northern Ireland for support of MS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manson, S.C., Palace, J., Frank, J.A. et al. Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Exp Brain Res 174, 728–733 (2006). https://doi.org/10.1007/s00221-006-0517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0517-4

Keywords

Navigation