Skip to main content
Log in

Contralateral cerebellar damage impairs imperative planning but not updating of aimed arm movements in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The specific motor control processes supported by the cerebellum and impaired with cerebellar damage remain unclear. The cerebellum has been implicated in both planning and updating of accurate movements. Previously, we used a statistical model to parcel aiming performance that was constrained by a timed-response paradigm into contributions attributed to a specified plan and feedforward updating. Here, we apply this procedure to determine the putative role of the cerebellum in planning and updating goal-directed aiming by comparing the performance of subjects with unilateral cerebellar stroke to controls. Subjects rapidly moved to targets in predictable or unpredictable conditions and cerebellar subjects used the contralesional limb to control for ipsilesional motor execution deficits. Displacement-derived movement velocity was used in the statistical model to determine the effect of planning and updating on accuracy. Compared to controls, the cerebellar group demonstrated errors in final position that were primarily determined by planning deficits. This finding is manifest in four ways: Cerebellar subjects (1) were less accurate than controls in both predictable and unpredictable conditions; (2) they showed minimal benefit from increased preparation time for target amplitude specification; (3) with ample time to plan direction, wrong direction response frequency was greater; and (4) final position was minimally determined by the plan. Because these deficits were found contralesional to the moving limb, the cerebellum’s role in planning is not lateralized to one hemisphere but rather our findings suggest that cerebellar output affects motor planning for both upper limbs. Indeed, a lesion analysis showed that the dentate nucleus, an area implicated in planning motor strategies and the primary cerebellar output nucleus, was the only common region affected by our patient group with contralateral cerebellar strokes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Bastian AJ (2002) Cerebellar limb ataxia: abnormal control of self-generated and external forces. Ann N Y Acad Sci 978:16–27

    Article  PubMed  Google Scholar 

  • Bastian AJ, Thach WT (1995) Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann Neurol 38:881–892

    Article  PubMed  CAS  Google Scholar 

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76:492–509

    PubMed  CAS  Google Scholar 

  • Bonnefoi-Kyriacou B, Legallet E, Lee RG, Trouche E (1998) Spatio-temporal and kinematic analysis of pointing movements performed by cerebellar patients with limb ataxia. Exp Brain Res 119:460–466

    Article  PubMed  CAS  Google Scholar 

  • Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–496

    PubMed  CAS  Google Scholar 

  • Boyd LA, Winstein CJ (2004) Cerebellar stroke impairs temporal but not spatial accuracy during implicit motor learning. Neurorehabil Neural Repair 18:134–143

    Article  PubMed  Google Scholar 

  • Cui SZ, Li EZ, Zang YF, Weng XC, Ivry R, Wang JJ (2000) Both sides of human cerebellum involved in preparation and execution of sequential movements. Neuroreport 11:3849–3853

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247

    PubMed  CAS  Google Scholar 

  • Doyon J, Gaudreau D, Laforce R Jr, Castonguay M, Bedard PJ, Bedard F, Bouchard JP (1997) Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn 34:218–245

    Article  PubMed  CAS  Google Scholar 

  • Dugas C, Smith AM (1992) Responses of cerebellar Purkinje cells to slip of a hand-held object. J Neurophysiol 67:483–495

    PubMed  CAS  Google Scholar 

  • Ellerman JM, Flament D, Kim SG, Fu QG, Merkle H, Ebner TJ, Ugurbil K (1994) Spatial patterns of functional activation of the cerebellum investigated using high field (4 T) MRI. NMR Biomed 7:63–68

    Article  PubMed  CAS  Google Scholar 

  • Espinoza E, Smith AM (1990) Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophysiol 64:698–714

    PubMed  CAS  Google Scholar 

  • Favilla M, Hening W, Ghez C (1989) Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction. Exp Brain Res 75:280–294

    Article  PubMed  CAS  Google Scholar 

  • Favilla M, Gordon J, Hening W, Ghez C (1990) Trajectory control in targeted force impulses. VII. Independent setting of amplitude and direction in response preparation. Exp Brain Res 79:530–538

    Article  PubMed  CAS  Google Scholar 

  • Fisher BE, Winstein CJ, Velicki MR (2000) Deficits in compensatory trajectory adjustments after unilateral sensorimotor stroke. Exp Brain Res 132:328–344

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Beldarrain M, Garcia-Monco JC, Rubio B, Pascual-Leone A (1998) Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Exp Brain Res 120:25–30

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghez C (1987a) Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 67:241–252

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghez C (1987b) Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res 67:253–269

    Article  PubMed  CAS  Google Scholar 

  • Hallett M, Berardelli A, Matheson J, Rothwell J, Marsden CD (1991) Physiological analysis of simple rapid movements in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry 54:124–133

    Article  PubMed  CAS  Google Scholar 

  • Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot wounds. Brain 40:461–535

    Article  Google Scholar 

  • Hulsmann E, Erb M, Grodd W (2003) From will to action: sequential cerebellar contributions to voluntary movement*1. NeuroImage 20:1485–1492

    Article  PubMed  Google Scholar 

  • Jancke L, Specht K, Mirzazade S, Peters M (1999) The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. NeuroImage 9:497–507

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Wolpert D (1998) Internal models for motor control. Novartis Found Symp 218:291–304

    PubMed  CAS  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Ji, Shabasaki H, Terashi A, Tashima K (1999) Cortical potentials preceding voluntary finger movement in patients with focal cerebellar lesion. Clin Neurophysiol 110:126–132

    Article  Google Scholar 

  • Krams M, Rushworth MF, Deiber MP, Frackowiak RS, Passingham RE (1998) The preparation, execution and suppression of copied movements in the human brain. Exp Brain Res 120:386–398

    Article  PubMed  CAS  Google Scholar 

  • Lang CE, Bastian AJ (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82:2108–2119

    PubMed  CAS  Google Scholar 

  • Lang CE, Bastian AJ (2001) Additional somatosensory information does not improve cerebellar adaptation during catching. Clin Neurophysiol 112:895–907

    Article  PubMed  CAS  Google Scholar 

  • Miall RC (1998) The cerebellum, predictive control and motor coordination. Novartis Found Symp 218:272–284

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Networks 9:1265–1279

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    PubMed  CAS  Google Scholar 

  • Monzee J, Smith AM (2004) Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol 91:1230–1239

    Article  PubMed  Google Scholar 

  • Morton SM, Dordevic GS, Bastian AJ (2004) Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance. Exp Brain Res 156:149–163

    Article  PubMed  Google Scholar 

  • Nakai R (1997) Custom ASYST software. Ref Type: Computer Program

  • Nezafat R, Shadmehr R, Holcomb HH (2001) Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res 140:66–76

    Article  PubMed  CAS  Google Scholar 

  • Nowak DA, Hermsdorfer J, Marquardt C, Fuchs HH (2002) Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res 145:28–39

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J, Timmann D, Rost K, Topka H (2005) Impaired generalization of weight-related information during grasping in cerebellar degeneration. Neuropsychologia 43:20–27

    Article  PubMed  Google Scholar 

  • Picard N, Smith AM (1992) Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J Neurophysiol 68:1867–1881

    PubMed  CAS  Google Scholar 

  • Rorden C (2003) MRIcro. (1.39 build 2). 2003. Ref Type: Computer Program

  • Sakai ST, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368:215–228

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic, San Diego

    Google Scholar 

  • Schweighofer N, Arbib MA, Kawato M (1998a) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10:86–94

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Spoelstra J, Arbib MA, Kawato M (1998b) Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10:95–105

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Dugas C, Fortier P, Kalaska J, Picard N (1993) Comparing cerebellar and motor cortical activity in reaching and grasping. Can J Neurol Sci 20(Suppl 3):S53–S61

    PubMed  Google Scholar 

  • Suzuki M, Yamazaki Y (2005) Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis. J Comput Neurosci 18:131–149

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Tarkka IM, Massaquoi S, Hallett M (1993) Movement-related cortical potentials in patients with cerebellar degeneration. Acta Neurol Scand 88:129–135

    Article  PubMed  CAS  Google Scholar 

  • Thach WT (1975) Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 88:233–241

    Article  PubMed  CAS  Google Scholar 

  • Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 22:9024–9034

    PubMed  CAS  Google Scholar 

  • Timmann D, Richter S, Bestmann S, Kalveram KT, Konczak J (2000) Predictive control of muscle responses to arm perturbations in cerebellar patients. J Neurol Neurosurg Psychiatry 69:345–352

    Article  PubMed  CAS  Google Scholar 

  • Timmann D, Drepper J, Calabrese S, Burgerhoff K, Maschke M, Kolb FP, Daum I, Diener HC (2004) Use of sequence information in associative learning in control subjects and cerebellar patients. Cerebellum 3:75–82

    Article  PubMed  CAS  Google Scholar 

  • Trillenberg P, Verleger R, Teetzmann A, Wascher E, Wessel K (2004) On the role of the cerebellum in exploiting temporal contingencies: evidence from response times and preparatory EEG potentials in patients with cerebellar atrophy. Neuropsychologia 42:754–763

    Article  PubMed  Google Scholar 

  • Verleger R, Wascher E, Wauschkuhn B, Jaskowski P, Allouni B, Trillenberg P, Wessel K (1999) Consequences of altered cerebellar input for the cortical regulation of motor coordination, as reflected in EEG potentials. Exp Brain Res 127:409–422

    Article  PubMed  CAS  Google Scholar 

  • Wessel K, Verleger R, Nazarenus D, Vieregge P, Kompf D (1994) Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy. Electroencephalogr Clin Neurophysiol 92:331–341

    Article  PubMed  CAS  Google Scholar 

  • Wessel K, Zeffiro T, Lou JS, Toro C, Hallett M (1995) Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Brain 118(Pt 2):379–393

    Article  PubMed  Google Scholar 

  • Wessel K, Zeffiro T, Toro C, Hallett M (1997) Self-paced versus metronome-paced finger movements. A positron emission tomography study. J Neuroimaging 7:145–151

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a Promotion of Doctoral Opportunities for Clinicians and Scholars (PODS II) scholarship from the Foundation for Physical Therapy awarded to Beth Fisher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, B.E., Boyd, L. & Winstein, C.J. Contralateral cerebellar damage impairs imperative planning but not updating of aimed arm movements in humans. Exp Brain Res 174, 453–466 (2006). https://doi.org/10.1007/s00221-006-0482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0482-y

Keywords

Navigation