Skip to main content

Advertisement

Log in

Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the present study we used the expression of the c-Fos-like protein as a “functional marker” to map populations of brainstem neurons involved in the generation of mastication. Experiments were conducted on urethane-anesthetized and paralyzed rabbits. In five animals (experimental group), rhythmical bouts of fictive masticatory-like motoneuron activity (cumulative duration 60–130 min) were induced by electrical stimulation of the left cortical “masticatory area” and recorded from the right digastric motoneuron pool. A control group of five animals (non-masticatory) were treated in the same way as the experimental animals with regard to surgical procedures, anesthesia, paralysis, and survival time. To detect the c-Fos-like protein, the animals were perfused, and the brainstems were cryosectioned and processed immunocytochemically. In the experimental group, the number of c-Fos-like immunoreactive neurons increased significantly in several brainstem areas. In rostral and lateral areas, increments occurred bilaterally in the borderzones surrounding the trigeminal motor nucleus (Regio h); the rostrodorsomedial half of the trigeminal main sensory nucleus; subnucleus oralis-γ of the spinal trigeminal tract; nuclei reticularis parvocellularis pars α and nucleus reticularis pontis caudalis (RPc) pars α. Further caudally-enhanced labeling occurred bilaterally in nucleus reticularis parvocellularis and nucleus reticularis gigantocellularis (Rgc) including its pars-α. Our results provide a detailed anatomical record of neuronal populations that are correlated with the generation of the masticatory motor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3A–D

Similar content being viewed by others

Abbreviations

Alv inf:

Inferior alveolar nerve

c-Fos-like-IR:

c-Fos-like immunoreactivity

Coe:

Nucleus coeruleus

DAB:

3,3′-diaminobenzidine

Dig:

Digastric nerve

HG:

Central gray matter (Höhlengrau)

k:

Cell group k

NVmt:

Trigeminal motor nucleus

NVmt-dig:

Digastric motoneuron subnucleus of the trigeminal motor nucleus

NVsnpr:

Main sensory trigeminal nucleus

NVspo-α:

Subnucleus-α of the oral nucleus of the spinal trigeminal tract

NVspo-β:

Subnucleus-β of the oral nucleus of the spinal trigeminal tract

NVspo-γ:

Subnucleus-γ of the oral nucleus of the spinal trigeminal tract

NintV:

Intertrigeminal subnucleus

NsV:

Supratrigeminal subnucleus

NrVII:

Nucleus retrofacialis

Ntsl:

Nucleus tractus solitarii

NVII:

Facial motor nucleus

NXII:

Hypoglossal motor nucleus

Ols:

Nucleus olivaris superior

Ol pr:

Nucleus olivaris principalis

PBS:

Phosphate buffered saline

p Ols:

Nucleus paraolivaris superior

Prph:

Nucleus praepositus hypoglossi

Pyr:

Tractus pyramidalis

Ramg:

Nucleus raphes magnus

Regio h:

Borderzone surrounding the trigeminal motor nucleus

Rl:

Nucleus reticularis lateralis

Rgc:

Nucleus reticularis gigantocellularis

Rgc-α:

Pars α of nucleus reticularis gigantocellularis

RPc:

Nucleus reticularis pontis caudalis

RPc-α:

Pars α of nucleus reticularis pontis caudalis

Rpc:

Nucleus reticularis parvocellularis

Rpc-α:

Pars α of nuclei reticularis parvocellularis

Sg:

Nucleus supragenualis

Trg:

Nucleus triangularis

References

  • Aldes LD, Boone TB (1985) Organization of projections from the principal sensory trigeminal nucleus to the hypoglossal nucleus in the rat: an experimental light and electron microscopic study with axonal tracer techniques. Exp Brain Res 59:16–29

    Article  CAS  PubMed  Google Scholar 

  • Appenteng K, Girdlestone D (1987) Transneuronal transport of wheat-germ agglutinin-conjugated horseradish peroxidase into trigeminal interneurones of the rat. J Comp Neurol 258:387–396

    Article  CAS  PubMed  Google Scholar 

  • Appenteng K, Conyers L, Curtis J, Moore J (1990) Monosynaptic connections of single V interneurones to the contralateral V motor nucleus in anaesthetised rats. Brain Res 514:128–130

    Article  CAS  PubMed  Google Scholar 

  • Ariyasinghe S, Inoue M, Yamamura K, Harasawa Y, Kurose M, Yamada Y (2004) Coordination of jaw and extrinsic tongue muscle activity during rhythmic jaw movements in anesthetized rabbits. Brain Res 1016:201–216

    Article  CAS  PubMed  Google Scholar 

  • Barajon I, Gossard JP, Hultborn H (1992) Induction of Fos expression by activity in the spinal rhythm generator for scratching. Brain Res 588:168–172

    Article  CAS  PubMed  Google Scholar 

  • Brocard F, Lund JP, Kolta A (2004) Firing properties of trigeminal principal sensory nucleus neurons change during the emergence of mastication in weaning rats. Soc Neurosci Abstr 34:879:7

    Google Scholar 

  • Brudzynski SM, Wang D (1996) c-Fos immunohistochemical localization of neurons in the mesencephalic locomotor region in the rat brain. Neuroscience 75:793–803

    Article  CAS  PubMed  Google Scholar 

  • Carr PA, Huang A, Noga BR, Jordan LM (1995) Cytochemical characteristics of cat spinal neurons activated during fictive locomotion. Brain Res Bull 37:213–218

    Article  CAS  PubMed  Google Scholar 

  • Chandler SH, Tal M (1986) The effects of brain stem transections on the neuronal networks responsible for rhythmical jaw muscle activity in the guinea pig. J Neurosci 6:1831–1842

    CAS  PubMed  Google Scholar 

  • Chandler SH, Goldberg LJ (1988) Effects of pontomedullary reticular formation stimulation on the neuronal networks responsible for rhythmical jaw movements in the guinea pig. J Neurophysiol 59:819–832

    CAS  PubMed  Google Scholar 

  • Chandler SH, Turman JE, Salem L, Goldberg LJ (1990) The effects of nanoliter ejections of lidocaine into pontomedullary reticular formation on cortically induced rhythmical jaw movements in the guinea pig. Brain Res 256:54–64

    Article  Google Scholar 

  • Coggeshall RE, Lekan HA (1996) Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J Comp Neurol 364:6–15

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Noga BR, Douglas JR, Jordan LM (2005) Localisation of spinal neurons activated during locomotion using the c-Fos immunohistochemical method. J Neurophysiol. DOI 10.1152/jn.00578.2004

  • Dallel R, Raboisson P, Woda A, Sessle BJ (1990) Properties of nociceptive and non-nociceptive neurons in trigeminal subnucleus oralis of the rat. Brain Res 521(1–2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Dampney RA, Li YW, Hirooka Y, Potts P, Polson JW (1995) Use of c-Fos functional mapping to identify the central baroreceptor reflex pathway: advantages and limitations. Clin Exp Hypertens 17:197–208

    CAS  PubMed  Google Scholar 

  • De S, Shuler CF, Turman JE (2003) The ontogeny of Krox-20 expression in brainstem and cerebellar neurons. J Chem Neuroanat 25:213–226

    Article  CAS  PubMed  Google Scholar 

  • Donga R, Lund JP, Veilleux D (1990) An electrophysiological study of trigeminal commissural interneurons in the anaesthetized rabbit. Brain Res 515:351–354

    Article  CAS  PubMed  Google Scholar 

  • Donga R, Lund JP (1991) Discharge patterns of trigeminal commissural last-order interneurons during fictive mastication in the rabbit. J Neurophysiol 66:1564–1578

    CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    Article  CAS  PubMed  Google Scholar 

  • Eisenman J, Landgren S, Novin D (1963) Functional organization in the main sensory trigeminal nucleus and in the rostral subdivision of the nucleus of the spinal trigeminal tract in the cat. Acta Physiol Scand 59(Suppl 214):S1–S44

    Google Scholar 

  • Enomoto A, Kogo M, Koizumi H, Ishihama K, Yamanishi T (2002) Localization of premotoneurons for an NMDA-induced repetitive rhythmical activity to TMNs. Neuroreport 13:2303–2307

    Article  PubMed  Google Scholar 

  • Falls WM (1984) Termination in trigeminal nucleus oralis of ascending intratrigeminal axons originating from neurons in the medullary dorsal horn: an HRP study in the rat employing light and electron microscopy. Brain Res 290:136–140

    Article  CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997a) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. I. Masticatory muscle motor systems. Brain Res Rev 25:255–275

    Article  CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997b) Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus. II. Facial muscle motor systems. Brain Res Rev 25:276–290

    Article  CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997c) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Rev 25:291–311

    Article  CAS  PubMed  Google Scholar 

  • Goldberg LJ, Chandler SH (1990) Central mechanisms of rhythmical trigeminal activity. In: Taylor A (ed) Neurophysiology of the jaws and teeth. MacMillan, London, pp 268–293

  • Gurahian SM, Chandler SH, Goldberg LJ (1989) Intracellular analysis of trigeminal motoneuron rhythmical activity during stimulation of pontomedullary reticular formation in anesthetized guinea pig. J Neurophysiol 62:1225–1236

    CAS  PubMed  Google Scholar 

  • Haartsen AB (1962) Cortical projections to mesencephalon, pons, medulla oblongata and spinal cord. An experimental study in the goat and the rabbit. PhD Thesis, Eduard Ijdo, NV, Leiden

  • Harris JA (1998) Using c-fos as a neural marker of pain. Brain Res Bull 45:1–8

    Article  CAS  PubMed  Google Scholar 

  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Rev 28:370–490

    Article  CAS  PubMed  Google Scholar 

  • Herrera DG, Robertson HA (1996) Activation of c-Fos in the brain. Prog Neurobiol 50:83–107

    Article  CAS  PubMed  Google Scholar 

  • Hiraba K, Taira M, Sahara Y, Nakamura Y (1988) Single-unit activity in bulbar reticular formation during food ingestion in chronic cats. J Neurophysiol 60:1333–1349

    CAS  PubMed  Google Scholar 

  • Howe PRC, Moon E, Dampney RAL (1983) Distribution of serotonin nerve cells in the rabbit brainstem. Neurosci Letters 38:125–130

    Article  CAS  Google Scholar 

  • Hsiao CF, Del Negro CA, Trueblood PR, Chandler SH (1998) Ionic basis for serotonin-induced bistable membrane properties in guinea pig trigeminal motoneurons. J Neurophysiol 79:2847–2856

    CAS  PubMed  Google Scholar 

  • Hsiao CF, Chandler SH (2003) Discharge characteristics and membrane properties of interneurons in the rat supratrigeminal motor nucleus. Soc Neurosci Abstr 33:499:1

    Google Scholar 

  • Huang A, Noga BR, Carr PA, Fedirchuk B, Jordan LM (2000) Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization. J Neurophysiol 83:3537–3547

    CAS  PubMed  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-Fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Masuda Y, Nagashima T, Yoshikawa K, Morimoto T (1992) Properties of rhythmically active reticular neurons around the trigeminal motor nucleus during fictive mastication in the rat. Neurosci Res 14:275–294

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Chandler SH, Goldberg LJ (1994) Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication. J Neurophysiol 71:2061–2073

    CAS  PubMed  Google Scholar 

  • Inoue M, Nozawa-Inoue K, Donga R, Yamada Y (2002) Convergence of selected inputs from sensory afferents to trigeminal premotor neurons with possible projections to masseter motoneurons in the rabbit. Brain Res 957:183–191

    Article  CAS  PubMed  Google Scholar 

  • Jacquin MF, Semba K, Rhoades RW, Egger MD (1982) Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res 246:285–291

    Article  CAS  PubMed  Google Scholar 

  • Jacquin MF, Chiaia NL, Haring JH, Rhoades RW (1990) Intersubnuclear connections within the rat trigeminal brainstem complex. Somatosens Mot Res 7:399–420

    CAS  PubMed  Google Scholar 

  • Jacquin MF, Rhoades RW (1990) Cell structure and response properties in the trigeminal subnucleus oralis. Somatosens Mot Res 7:265–288

    CAS  PubMed  Google Scholar 

  • Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J (1996) Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17:747–758

    Article  CAS  PubMed  Google Scholar 

  • Julien C, Rossignol S (1982) Electroneurographic recordings with polymer cuff electrodes in paralyzed cats. J Neurosci Methods 5:267–272

    Article  CAS  PubMed  Google Scholar 

  • Kamogawa H, Hanashima N, Naito K, Kagaya K (1988) Candidate interneurons mediating peripherally evoked disynaptic inhibition of masseter motoneurons of both sides. Neurosci Lett 95:149–154

    Article  CAS  PubMed  Google Scholar 

  • Katakura N, Chandler SH (1990) An iontophoretic analysis of the pharmacologic mechanisms responsible for trigeminal motoneuronal discharge during masticatory-like activity in the guinea pig. J Neurophysiol 63:356–369

    CAS  PubMed  Google Scholar 

  • Kiehn O, Kjaerulff O (1998) Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann NY Acad Sci 860:110–129

    CAS  PubMed  Google Scholar 

  • Kogo M, Funk GD, Chandler SH (1996) Rhythmical oral-motor activity recorded in an in vitro brainstem preparation. Somatosens Motor Res 13:39–48

    CAS  Google Scholar 

  • Kolta A (1997) In vitro investigation of synaptic relations between interneurons surrounding the trigeminal motor nucleus and masseteric motoneurons. J Neurophysiol 78:1720–1725

    CAS  PubMed  Google Scholar 

  • Kolta A, Westberg KG, Lund JP (2000) Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J Chem Neuroanat 19:175–195

    Article  CAS  PubMed  Google Scholar 

  • Kovács KJ (1998) c-Fos as a transcriptional factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297

    Article  PubMed  Google Scholar 

  • Landgren S, Olsson KÅ (1976) Localization of evoked potentials in the digastric, masseteric, supra- and intertrigeminal subnuclei of the cat. Exp Brain Res 26:299–318

    Article  CAS  PubMed  Google Scholar 

  • Landgren S, Olsson KÅ, Westberg KG (1986) Bulbar neurones with axonal projections to the trigeminal motor nucleus in the cat. Exp Brain Res 65:98–111

    Article  CAS  PubMed  Google Scholar 

  • Li JL, Kaneko T, Nomura S, Mizuno N (1998) Projections from the caudal spinal trigeminal nucleus to commissural interneurons in the supratrigeminal region: an electron microscope study in the rat. Neurosci Lett 254:57–60

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Takada M, Kaneko T, Mizuno N (1995) Premotor neurons for trigeminal motor nucleus neurons innervating the jaw-closing and jaw-opening muscles: differential distribution in the lower brainstem of the rat. J Comp Neurol 356:563–579

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, Masuda Y, Inoue T, Fuchihata H, Sumida A, Takada K, Morimoto T (1993) Coordination of cortically induced rhythmic jaw and tongue movements in the rabbit. J Neurophysiol 69:569–584

    CAS  PubMed  Google Scholar 

  • Lund JP, Sasamoto K, Murakami T, Olsson KÅ (1984). Analysis of rhythmical jaw movements produced by electrical stimulation of motor-sensory cortex of rabbits. J Neurophysiol 52:1014–1029

    CAS  PubMed  Google Scholar 

  • Lund JP (1991) Mastication and its control by the brain stem. Crit Rev Oral Biol Med 2:33–64

    CAS  PubMed  Google Scholar 

  • Lund JP, Kolta A, Westberg KG, Scott G (1998) Brainstem mechanisms underlying feeding behaviours. Curr Opin Neurobiol 8:718–724

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Novikov LN, Wiberg M, Kellerth JO (2001) Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp Brain Res 139:216–223

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Meli A (1986) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: general considerations. Experientia 42:109–114

    CAS  PubMed  Google Scholar 

  • Marfurt CF (1981) The central projections of trigeminal primary afferent neurons in the cat as determined by the tranganglionic transport of horseradish peroxidase. J Comp Neurol 203:785–798

    CAS  PubMed  Google Scholar 

  • Marfurt CF, Rajchert DM (1991) Trigeminal primary afferent projections to “non-trigeminal” areas of the rat central nervous system. J Comp Neurol 303:489–511

    Article  CAS  PubMed  Google Scholar 

  • Matsutani K, Tsuruoka M, Shinya A, Furuya R, Kawawa T, Inoue T (2003) Coeruleotrigeminal suppression of nociceptive sensorimotor function during inflammation in the craniofacial region of the rat. Brain Res Bull 61:73–80

    Article  PubMed  Google Scholar 

  • McBride RL, Sutin J (1984) Noradrenergic hyperinnervation of the trigeminal sensory nuclei. Brain Res 324:211–221

    Article  CAS  PubMed  Google Scholar 

  • Meessen H, Olszewski J (1949) Cytoarchitektonischer Atlas des Rautenhirns des Kaninchens. Karger, Basel

    Google Scholar 

  • Min MY, Hsu PC, Yang HW (2003) The physiological and morphological characteristics of interneurons caudal to the trigeminal motor nucleus in rats. Eur J Neurosci 18:2981–2998

    Article  PubMed  Google Scholar 

  • Mizuno N (1970) Projection fibers from the main sensory trigeminal nucleus and the supratrigeminal region. J Comp Neurol 139:457–471

    Article  CAS  PubMed  Google Scholar 

  • Mizuno N, Yasui Y, Nomura S, Itoh K, Konishi A, Takada M, Kudo M (1983) A light and electron microscopic study of premotor neurons for the trigeminal motor nucleus. J Comp Neurol 215:290–298

    Article  CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the central nervous system: involvement of the inducible proto-oncogenes Fos and jun. Ann Rev Neurosci 14:421–451

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y (1987) Rhythmical jaw movements and lateral ponto-medullary reticular neurons in rats. Comp Biochem Physiol A 86:7–14

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Katakura N (1995) Generation of masticatory rhythm in the brainstem. Neurosci Res 23:1–19

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Katakura N, Nakajima M (1999) Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. J Med Dent Sci 46:63–73

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Katakura N, Nakajima M, Liu J (2004) Rhythm generation for food-ingestive movements. Prog Brain Res 143:97–103

    PubMed  Google Scholar 

  • Nozaki S, Enomoto S, Nakamura Y (1983) Identification and input-output properties of bulbar reticular neurons involved in the cerebral cortical control of trigeminal motoneurons in cats. Exp Brain Res 49:363–372

    Article  CAS  PubMed  Google Scholar 

  • Nozaki S, Iriki A, Nakamura Y (1986a) Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J Neurophysiol 55:806–825

    CAS  PubMed  Google Scholar 

  • Nozaki S, Iriki A, Nakamura Y (1986b) Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J Neurophysiol 55:826–845

    CAS  PubMed  Google Scholar 

  • Nozaki S, Iriki A, Nakamura Y (1993) Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig. J Neurophysiol 69:595–608

    CAS  PubMed  Google Scholar 

  • Olsson KÅ, Sasamoto K, Lund JP (1986a) Modulation of transmission in rostral trigeminal sensory nuclei during chewing. J Neurophysiol 55:56–75

    CAS  PubMed  Google Scholar 

  • Olsson KÅ, Landgren S, Westberg KG (1986b) Location of, and peripheral convergence on, the interneuron in the disynaptic path from the coronal gyrus of the cerebral cortex to the trigeminal motorneurons in the cat. Exp Brain Res 65:83–97

    Article  CAS  PubMed  Google Scholar 

  • Olsson KÅ, Westberg KG (1991) Integration in trigeminal premotor interneurones in the cat. 2. Functional characteristics of neurones in the subnucleus-gamma of the oral nucleus of the spinal trigeminal tract with a projection to the digastric motoneurone subnucleus. Exp Brain Res 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23:1478–1486

    CAS  PubMed  Google Scholar 

  • Ro JY, Harriott A, Crouse U, Capra NF (2003) Innocuous jaw movements increase c-Fos expression in trigeminal sensory nuclei produced by masseter muscle inflammation. Pain 104:539–548

    Article  CAS  PubMed  Google Scholar 

  • Rocha MJA, Herbert H (1997) Effects of anesthetics on Fos protein expression in autonomic brain nuclei related to cardiovascular regulation. Neuropharmacology 36:1779–1781

    Article  CAS  PubMed  Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988) Expression of c-Fos protein in the brain: metabolic mapping at the cellular level. Science 240:1328–1331

    CAS  PubMed  Google Scholar 

  • Sandler VM, Puil E, Schwarz DW (1998) Intrinsic response properties of bursting neurons in the nucleus principalis trigemini of the gerbil. Neuroscience 83:891–904

    Article  CAS  PubMed  Google Scholar 

  • Schwartz G, Enomoto S, Valiquette C, Lund JP (1989) Mastication in the rabbit: a description of movement and muscle activity. J Neurophysiol 62:273–287

    CAS  PubMed  Google Scholar 

  • Scott G, Westberg KG, Vrentzos N, Kolta A, Lund JP (2003) Effect of lidocaine and NMDA injections into the medial pontobulbar reticular formation on mastication evoked by cortical stimulation in anaesthetized rabbits. Eur J Neurosci 17:2156–2162

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga Y, Okamoto T, Nishimori T, Suemune S, Nasution ID, Chen IC, Tsuru K, Yoshida A, Tabuchi K, Hosoi M, Tsuru H (1986) Oral and facial representation in the trigeminal principal and rostral spinal nuclei of the cat. J Comp Neurol 244(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga Y, Yoshida A, Mitsuhiro Y, Tsuru K, Doe K (1988) Morphological and functional properties of trigeminal nucleus oralis neurons projecting to the trigeminal motor nucleus of the cat. Brain Res 461:143–149

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman JL (1989) Brain stem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281:69–96

    Article  CAS  PubMed  Google Scholar 

  • Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T, He YF, Xiao C, Ichikawa H (1998) c-Fos induction in the subnucleus oralis following trigeminal nerve stimulation. Brain Res 783:158–162

    Article  CAS  PubMed  Google Scholar 

  • Sunada T, Kurasawa I, Hirose Y, Nakamura Y (1990) Intracellular response properties of neurons in the spinal trigeminal nucleus to peripheral and cortical stimulation in the cat. Brain Res 514:189–197

    Article  CAS  PubMed  Google Scholar 

  • Takada M, Itoh K, Yasui Y, Mitani A, Nomura S, Mizuno N (1984) Distribution of premotor neurons for the hypoglossal nucleus in the cat. Neurosci Lett 52:141–146

    Article  CAS  PubMed  Google Scholar 

  • Takemura M, Shimada T, Sugiyo S, Nokubi T, Shigenaga Y (2000) Mapping of c-Fos in the trigeminal sensory nucleus following high and low-intensity afferent stimulation in the rat. Exp Brain Res 130:113–123

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Kogo M, Chandler SH, Matsuya T (1999) Localization of oral-motor rhythmogenic circuits in the isolated rat brainstem preparation. Brain Res 821:190–199

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi A, Kolta A, Chen CC, Lund JP (2003) Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur J Neurosci 17:229–238

    Article  CAS  PubMed  Google Scholar 

  • Turman JE, Chandler SH (1994a) Immunohistochemical evidence for GABA and glycine-containing trigeminal premotoneurons in the guinea pig. Synapse 18:7–20

    Article  CAS  PubMed  Google Scholar 

  • Turman JE, Chandler SH (1994b) Immunohistochemical localization of glutamate and glutaminase in guinea pig trigeminal premotoneurons. Brain Res 634:49–61

    Article  CAS  PubMed  Google Scholar 

  • Turman JE, Chopiuk NB, Shuler CF (2001) The Krox-20 null mutation differentially affects the development of masticatory muscles. Dev Neurosci 23:113–121

    Article  CAS  PubMed  Google Scholar 

  • Veasey SC, Fornal CA, Metzler CW, Jacobs BL (1995) Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15:5346–5359

    CAS  PubMed  Google Scholar 

  • Voisin DL, Domejean-Orliaguet S, Chalus M, Dallel R, Woda A (2002) Ascending connections from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. Neuroscience 109:183–193

    Article  CAS  PubMed  Google Scholar 

  • Vornov JJ, Sutin J (1983) Brainstem projections to the normal and noradrenergically hyperinnervated trigeminal motor nucleus. J Comp Neurol 214:198–208

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Tanaka E, Nishi M, Iwabe T, Hattori Y, Suemune S, Tanne K (2002) Expression of c-Fos-like immunoreactive neurons in the supratrigeminal region in the rat following noxious stimulation of the orofacial tissues. Neurosci Lett 335:99–102

    Article  CAS  PubMed  Google Scholar 

  • Westberg KG, Sandström G, Olsson KÅ (1995) Integration in trigeminal premotor interneurons in the cat. 3. Input characteristics and synaptic actions of neurons in subnucleus-γ of the oral nucleus of the spinal trigeminal tract with a projection to the masseteric motorneurone subnucleus. Exp Brain Res 104:449–461

    Article  CAS  PubMed  Google Scholar 

  • Westberg KG, Clavelou P, Sandström G, Lund JP (1998) Evidence that trigeminal brainstem interneurons form subpopulations to produce different forms of mastication in the rabbit. J Neurosci 18:6466–6479

    CAS  PubMed  Google Scholar 

  • Westberg KG, Scott G, Olsson KÅ, Lund JP (2001) Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit. Eur J Neurosci 14:1709–1718

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R (1989) Sensory and motor responses of trigeminal and reticular neurons during ingestive behavior in rats. Exp Brain Res 76:386–400

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Fukami H, Nagase Y, Appenteng K, Honma S, Zhang LF, Bae YC, Shigenaga Y (2001) Quantitative analysis of synaptic contacts made between functionally identified oralis neurons and trigeminal motoneurons in cats. J Neurosci 21:6298–6307

    CAS  PubMed  Google Scholar 

  • Zerari-Mailly F, Pinganaud G, Dauvergne C, Buisseret P, Buisseret-Delmas C (2001) Trigemino-reticulo-facial and trigemino-reticulo-hypoglossal pathways in the rat. J Comp Neurol 429:80–93

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Luo P (2003) Ultrastructural features of synapse from dorsal parvocellular reticular formation neurons to hypoglossal motoneurons of the rat. Brain Res 963:262–273

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman EA, Chambers WW, Liu CN (1964) An experimental study of the anatomical organization of the cortico-bulbar system in the albino rat. J Comp Neurol 123:301–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Swedish MRC (04X-00045) and the Canadian Institutes of Health Research (Grant No. MT14392), Västerbottens läns landsting and the Medical and Odontological Faculty, Umeå University, Sweden. We would like to thank Erland Danielsson, Gunvor Hellström, Tommy Olsson, Jan Stenman and Lev Novikov for their support and help. We also thank Kristina Olsson-Gibbs for stylistic revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-G. Westberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athanassiadis, T., Olsson, K., Kolta, A. et al. Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit. Exp Brain Res 165, 478–489 (2005). https://doi.org/10.1007/s00221-005-2319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2319-5

Keywords

Navigation