Skip to main content

Advertisement

Log in

Glial reactions in a rodent cauda equina injury and repair model

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the adult rat, an avulsion injury of lumbosacral ventral roots results in a progressive and pronounced loss of the axotomized motoneurons. A subsequent acute implantation of an avulsed ventral root into the spinal cord has neuroprotective effects. However, it has not been known whether a surgical implantation of an avulsed ventral root into the spinal cord for neural repair purposes affects intramedullary glial and microglial reactions. Here, adult female Sprague-Dawley rats underwent a unilateral L5-S2 ventral root avulsion injury with or without acute implantation of the L6 ventral root into the spinal cord. At 4 weeks postoperatively, immunohistochemistry using primary antibodies to GFAP (astrocytes), Ox-42 (microglia), and ED-1 (macrophages) was performed at the L6 spinal cord segment, and quantified using densitometry. Our results show that a lumbosacral ventral root avulsion injury induces an activation of astrocytes, microglia, and macrophages in the ventral horn. Interestingly, an acute implantation of an avulsed root into the white matter does not significantly affect the activation of glial cells or macrophages in the ventral horn. We speculate that neuroprotective and axonal growth promoting benefits of the combined glial and microglial/ macrophage responses may outweigh their potential negative effects, as previous studies have shown that implantation of avulsed roots is a successful strategy in promoting reinnervation of peripheral targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldskogius H (2001) Microglia in neuroregeneration. Microsc Res Tech 54:40–46

    Article  PubMed  CAS  Google Scholar 

  • Anderson PN, Campbell G, Zhang Y, Lieberman AR (1998) Cellular and molecular correlates of the regeneration of adult mammalian CNS axons into peripheral nerve grafts. Prog Brain Res 117:211–232

    PubMed  CAS  Google Scholar 

  • Anneser JM, Berthele A, Borasio GD, Castro-Lopes JM, Zieglgansberger W, Tolle TR (2000) Axotomy of the sciatic nerve differentially affects expression of metabotropic glutamate receptor mRNA in adult rat motoneurons. Brain Res 868:215–221

    Article  PubMed  CAS  Google Scholar 

  • Barclay AN (1981) Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44:727–736

    PubMed  CAS  Google Scholar 

  • Bellander BM, Bendel O, Von Euler G, Ohlsson M, Svensson M (2004) Activation of microglial cells and complement following traumatic injury in rat entorhinal-hippocampal slice cultures. J Neurotrauma 21:605–615

    Article  PubMed  Google Scholar 

  • Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M (2001) Complement activation in the human brain after traumatic head injury. J Neurotrauma 18:1295–1311

    Article  PubMed  CAS  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    Article  PubMed  CAS  Google Scholar 

  • Brecknell JE, Fawcett JW (1996) Axonal regeneration. Biol Rev Camb Philos Soc 71:227–255

    Article  PubMed  CAS  Google Scholar 

  • Cajal SRY (1928) Degeneration and regeneration of the nervous system. R. M. May, London

    Google Scholar 

  • Campbell G, Lieberman AR, Anderson PN, Turmaine M (1992) Regeneration of adult rat CNS axons into peripheral nerve autografts: ultrastructural studies of the early stages of axonal sprouting and regenerative axonal growth. J Neurocytol 21:755–787

    Article  PubMed  CAS  Google Scholar 

  • Carlson J, Lais AC, Dyck PJ (1979) Axonal atrophy from permanent peripheral axotomy in adult cat. J Neuropathol Exp Neurol 38:579–585

    PubMed  CAS  Google Scholar 

  • Carlstedt T (2000) Approaches permitting and enhancing motoneuron regeneration after spinal cord, ventral root, plexus and peripheral nerve injuries. Curr Opin Neurol 13:683–686

    Article  PubMed  CAS  Google Scholar 

  • Carlstedt T, Aldskogius H, Hallin RG, Nilsson-Remahl I (1993) Novel surgical strategies to correct neural deficits following experimental spinal nerve root lesions. Brain Res Bull 30:447–451

    Article  PubMed  CAS  Google Scholar 

  • Carlstedt T, Lindå H, Cullheim S, Risling M (1986) Reinnervation of hind limb muscles after ventral root avulsion and implantation in the lumbar spinal cord of the adult rat. Acta Physiol Scand 128:645–646

    PubMed  CAS  Google Scholar 

  • Carlstedt T, Noren G (1995) Repair of ruptured spinal nerve roots in a brachial plexus lesion. Case report. J Neurosurg 82:661–663

    PubMed  CAS  Google Scholar 

  • Chai H, Wu W, So KF, Yip HK (2000) Survival and regeneration of motoneurons in adult rats by reimplantation of ventral root following spinal root avulsion. Neuroreport 11:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Cullheim S, Carlstedt T, Risling M (1999) Axon regeneration of spinal motoneurons following a lesion at the cord-ventral root interface. Spinal Cord 37:811–819

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M, Kawana K, Negishi H, Adachi-Usami E (1999) Glial cells in degenerating and regenerating optic nerve of the adult rat. Brain Res Bull 48:573–579

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra CD, Dopp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    PubMed  CAS  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Heiduschka P, Thanos S (2001) Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol 172:257–272

    Article  PubMed  CAS  Google Scholar 

  • Franzen R, Schoenen J, Leprince P, Joosten E, Moonen G, Martin D (1998) Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J Neurosci Res 51:316–327

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VM, Persson H (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Vaca K, Corpuz M (1993) Brain glia release factors with opposing actions upon neuronal survival. J Neurosci 13:29–37

    PubMed  CAS  Google Scholar 

  • Graeber MB, Lopez-Redondo F, Ikoma E, Ishikawa M, Imai Y, Nakajima K, Kreutzberg GW, Kohsaka S (1998) The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res 813:241–253

    Article  PubMed  CAS  Google Scholar 

  • Gu HY, Chai H, Zhang JY, Yao ZB, Zhou LH, Wong WM, Bruce I, Wu WT (2004) Survival, regeneration and functional recovery of motoneurons in adult rats by reimplantation of ventral root following spinal root avulsion. Eur J Neurosci 19:2123–2131

    Article  PubMed  Google Scholar 

  • Guth L, Zhang Z, DiProspero NA, Joubin K, Fitch MT (1994) Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Exp Neurol 126:76–87

    Article  PubMed  CAS  Google Scholar 

  • Hallin RG, Carlstedt T, Nilsson-Remahl I, Risling M (1999) Spinal cord implantation of avulsed ventral roots in primates; correlation between restored motor function and morphology. Exp Brain Res 124:304–310

    Article  PubMed  CAS  Google Scholar 

  • Hammerle B, Carnicero A, Elizalde C, Ceron J, Martinez S, Tejedor FJ (2003) Expression patterns and subcellular localization of the Down syndrome candidate protein MNB/DYRK1A suggest a role in late neuronal differentiation. Eur J Neurosci 17:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Hoang TX, Franchini BT, Warner EA, Pikov V, Nieto JH, Havton LA (2003a) Implantation of avulsed lumobsacral ventral roots into the spinal cord promotes functional recovery of the lower urinary tract, vol 2005. Program no. 76.15. 2003 Abstract viewer/itinerary planner. Society for Neuroscience, Washington, DC. (Online)

  • Hoang TX, Nieto JH, Tillakaratne NJ, Havton LA (2003b) Autonomic and motor neuron death is progressive and parallel in a lumbosacral ventral root avulsion model of cauda equina injury. J Comp Neurol 467:477–486

    Article  PubMed  Google Scholar 

  • Johnson IP, Sears TA, Hunter AS (1991) Retrograde response to axotomy of motoneurons in the thoracic spinal cord of the aging cat. Neurobiol Aging 12:151–160

    Article  PubMed  CAS  Google Scholar 

  • Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H (1997) BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol 144:273–286

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos VE, Price WL, Pardo CA, Price DL (1994) Ventral root avulsion: an experimental model of death of adult motor neurons. J Comp Neurol 342:35–44

    Article  PubMed  CAS  Google Scholar 

  • Koshinaga M, Whittemore SR (1995) The temporal and spatial activation of microglia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion. J Neurotrauma 12:209–222

    PubMed  CAS  Google Scholar 

  • Lang EM, Borges J, Carlstedt T (2004) Surgical treatment of lumbosacral plexus injuries. J Neurosurg Spine 1:64–71

    Article  PubMed  Google Scholar 

  • Lindå H, Piehl F, Dagerlind A, Verge VM, Arvidsson U, Cullheim S, Risling M, Ulfhake B, Hokfelt T (1992) Expression of GAP-43 mRNA in the adult mammalian spinal cord under normal conditions and after different types of lesions, with special reference to motoneurons. Exp Brain Res 91:284–295

    Article  PubMed  Google Scholar 

  • Lundberg C, Lidman O, Holmdahl R, Olsson T, Piehl F (2001) Neurodegeneration and glial activation patterns after mechanical nerve injury are differentially regulated by non-MHC genes in congenic inbred rat strains. J Comp Neurol 431:75–87

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Kaiser A, Price AC (1999) Motor neuron degeneration after sciatic nerve avulsion in adult rat evolves with oxidative stress and is apoptosis. J Neurobiol 40:185–201

    Article  PubMed  CAS  Google Scholar 

  • Mattsson P, Meijer B, Svensson M (1999) Extensive neuronal cell death following intracranial transection of the facial nerve in the adult rat. Brain Res Bull 49:333–341

    Article  PubMed  CAS  Google Scholar 

  • Maynard FM Jr, Bracken MB, Creasey G, Ditunno JF Jr, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W (1997) International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord 35:266–274

    Article  PubMed  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    Article  PubMed  CAS  Google Scholar 

  • Morrow DR, Campbell G, Lieberman AR, Anderson PN (1993) Differential regenerative growth of CNS axons into tibial and peroneal nerve grafts in the thalamus of adult rats. Exp Neurol 120:60–69

    Article  PubMed  CAS  Google Scholar 

  • Moschilla G, Song S, Chakera T (2001) Post-traumatic lumbar nerve root avulsion. Australas Radiol 45:281–284

    Article  PubMed  CAS  Google Scholar 

  • Nacimiento W, Sappok T, Brook GA, Toth L, Schoen SW, Noth J, Kreutzberg GW (1995) Structural changes of anterior horn neurons and their synaptic input caudal to a low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study. Acta Neuropathol (Berl) 90:552–564

    Article  CAS  Google Scholar 

  • Naveilhan P, ElShamy WM, Ernfors P (1997) Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci 9:1450–1460

    Article  PubMed  CAS  Google Scholar 

  • Novikov L, Novikova L, Kellerth JO (1995) Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci Lett 200:45–48

    Article  PubMed  CAS  Google Scholar 

  • Novikov LN, Novikova LN, Holmberg P, Kellerth J (2000) Exogenous brain-derived neurotrophic factor regulates the synaptic composition of axonally lesioned and normal adult rat motoneurons. Neuroscience 100:171–181

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson M, Bellander B-M, Langmoen IA, Svensson M (2003) Complement activation following optic nerve crush in the adult rat. J Neurotrauma 20:895–904

    Article  PubMed  Google Scholar 

  • Ohlsson M, Mattsson P, Svensson M (2004a) A temporal study of axonal degeneration and glial scar formation following a standardized crush injury of the optic nerve in the adult rat. Restor Neurol Neurosci 22:1–10

    PubMed  Google Scholar 

  • Ohlsson M, Mattsson P, Wamil BD, Hellerqvist CG, Svensson M (2004b) Macrophage stimulation using a group B-streptococcus exotoxin (CM101) leads to axonal regrowth in the injured optic nerve. Restor Neurol Neurosci 22:33–41

    PubMed  CAS  Google Scholar 

  • Ohlsson M, Westerlund U, Langmoen IA, Svensson M (2004c) Methylprednisolone treatment does not influence axonal regeneration or degeneration following optic nerve injury in the adult rat. J Neuroophthalmol 24:11–18

    PubMed  Google Scholar 

  • Olsson T, Lundberg C, Lidman O, Piehl F (2000) Genetic regulation of nerve avulsion-induced spinal cord inflammation. Ann N Y Acad Sci 917:186–196

    Article  PubMed  CAS  Google Scholar 

  • Piehl F, Lundberg C, Khademi M, Bucht A, Dahlman I, Lorentzen JC, Olsson T (1999) Non-MHC gene regulation of nerve root injury induced spinal cord inflammation and neuron death. J Neuroimmunol 101:87–97

    Article  PubMed  CAS  Google Scholar 

  • Piehl F, Tabar G, Cullheim S (1995) Expression of NMDA receptor mRNAs in rat motoneurons is down-regulated after axotomy. Eur J Neurosci 7:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  PubMed  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function [published erratum appears in Trends Neurosci 1998 Feb;21(2):80]. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  • Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84:739–752

    Article  PubMed  CAS  Google Scholar 

  • Schrøder HD (1980) Organization of the motoneurons innervating the pelvic muscles of the male rat. J Comp Neurol 192:567–587

    Article  PubMed  Google Scholar 

  • Shiromani PJ, Armstrong DM, Bruce G, Hersh LB, Groves PM, Gillin JC (1987) Relation of pontine choline acetyltransferase immunoreactive neurons with cells which increase discharge during REM sleep. Brain Res Bull 18:447–455

    Article  PubMed  CAS  Google Scholar 

  • Svensson M, Aldskogius H (1993) Synaptic density of axotomized hypoglossal motorneurons following pharmacological blockade of the microglial cell proliferation. Exp Neurol 120:123–131

    Article  PubMed  CAS  Google Scholar 

  • Vanden Noven S, Wallace N, Muccio D, Turtz A, Pinter MJ (1993) Adult spinal motoneurons remain viable despite prolonged absence of functional synaptic contact with muscle. Exp Neurol 123:147–156

    Article  PubMed  CAS  Google Scholar 

  • von Bartheld CS (1998) Neurotrophins in the developing and regenerating visual system. Histol Histopathol 13:437–459

    PubMed  Google Scholar 

  • Wu CW, Kaas JH (2000) Spinal cord atrophy and reorganization of motoneuron connections following long-standing limb loss in primates. Neuron 28:967–978

    Article  PubMed  CAS  Google Scholar 

  • Wu W (1993) Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry. Exp Neurol 120:153–159

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Chai H, Zhang J, Gu H, Xie Y, Zhou L (2004) Delayed implantation of a peripheral nerve graft reduces motoneuron survival but does not affect regeneration following spinal root avulsion in adult rats. J Neurotrauma 21:1050–1058

    Article  PubMed  Google Scholar 

  • Wu W, Han K, Li L, Schinco FP (1994) Implantation of PNS graft inhibits the induction of neuronal nitric oxide synthase and enhances the survival of spinal motoneurons following root avulsion. Exp Neurol 129:335–339

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23:2284–2293

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Grant Sponsors: National Institutes of Health #NS042719; The Paralysis Project of America; The Roman Reed Funds for Spinal Cord Injury Research of California; UCLA School of Medicine / Stein-Oppenheimer Endowment Award; Nathan Shapell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif A. Havton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlsson, M., Hoang, T.X., Wu, J. et al. Glial reactions in a rodent cauda equina injury and repair model. Exp Brain Res 170, 52–60 (2006). https://doi.org/10.1007/s00221-005-0188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0188-6

Keywords

Navigation