Skip to main content
Log in

A single re-implanted ventral root exerts neurotropic effects over multiple spinal cord segments in the adult rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Spinal cord injuries, particularly traumatic injuries to the conus medullaris and cauda equina, are typically complex and involve multiple segmental levels. Implantation of avulsed ventral roots into the spinal cord as a repair strategy has been shown to be neuroprotective and promote axonal regeneration by spinal cord neurons into an implanted root. However, it is not well known over what distance in the spinal cord an implanted ventral root can exert its neurotropic effect. Here, we investigated whether an avulsed L6 ventral root acutely implanted into the rat spinal cord after a four level (L5–S2) unilateral ventral root avulsion injury may exert neurotropic effects on autonomic and motor neurons over multiple spinal cord segments at 6 weeks postoperatively. Using retrograde labeling techniques and stereological quantification methods, we demonstrate that autonomic and motor neurons from all four lesioned spinal cord segments, spanning more than an 8 mm rostro-caudal distance, reinnervated the one implanted root. The rostro-caudal distribution suggested a gradient of neurotropism, where the axotomized neurons closest to the implanted site had the highest probability of root reinnervation. These results suggest that implantation of a single ventral root may provide neurotropic effects to injured neurons at the site of lesion as well as in the adjacent spinal cord segments. Our findings may be of translational research interest for the development of surgical repair strategies after multi-level conus medullaris and cauda equina injuries, in which fewer ventral roots than spinal cord segments may be available for implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambalavanar R, Morris R (1989) Fluorogold injected either subcutaneously or intravascularly results in extensive retrograde labeling of CNS neurons having axons terminating outside the blood-brain barrier. Brain Res 505:171–175

    Article  PubMed  CAS  Google Scholar 

  • Anderson CR, Edwards SL (1994) Intraperitoneal injections of Fluorogold reliably label all sympathetic preganglionic neurons in the rat. J Neurosci Methods 53:137–141

    Article  PubMed  CAS  Google Scholar 

  • Anderson PN, Campbell G, Zhang Y, Lieberman AR (1998) Cellular and molecular correlates of the regeneration of the adult mammalian CNS axons into peripheral nerve grafts. Prog Brain Res 117:211–232

    Article  PubMed  CAS  Google Scholar 

  • Benfey M, Aguayo AJ (1982) Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296:150–152

    PubMed  ADS  CAS  Google Scholar 

  • Benfey M, Bunger UR, Vidal-Sanz M, Bray GM, Aguayo AJ (1985) Axonal regeneration from GABAergic neurons in the adult rat thalamus. J Neurocytol 14:279–296

    Article  PubMed  CAS  Google Scholar 

  • Blits B, Carlstedt TP, Ruitenberg MJ, de Winter F, Hermens WT, Dijkhuizen PA, Claasens JW, Eggers R, van der Sluis R, Tenenbaum L, Boer GJ, Verhaagen J (2004) Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol 189:303–316

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS, McAtee M, Dai HN, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148:475–494

    Article  PubMed  CAS  Google Scholar 

  • Campbell G, Lieberman AR, Anderson PN, Turmaine M (1992) Regeneration of adult rat CNS axons into peripheral nerve autografts: ultrastructural studies of early stages of axonal sprouting and regenerative axonal growth. J Neurocytol 21:755–787

    Article  PubMed  CAS  Google Scholar 

  • Carlstedt T (1991) Experimental studies on surgical treatment of avulsed spinal nerve roots in brachial plexus injury. J Hand Surg [Br] 16(5):477–482

    Article  CAS  Google Scholar 

  • Carlstedt T, Lindå H, Cullheim S, Risling M (1986) Reinnervation of hindlimb muscles after ventral root avulsion and implantation in the lumbar spinal cord in the adult rat. Acta Physiol Scand 128:645–646

    PubMed  CAS  Google Scholar 

  • Carlstedt TP, Hallin RG, Hedström KG, Nilsson-Remahl IAM (1993) Functional recovery in primates with brachial plexus injury after spinal cord implantation of avulsed ventral roots. J Neurol Neurosurg Psychiatry 56:649–654

    PubMed  CAS  Google Scholar 

  • Carlstedt T, Grane P, Hallin RG, Norén G (1995) Return of function after spinal cord implantation of avulsed spinal roots. Lancet 346:1323–1325

    Article  PubMed  CAS  Google Scholar 

  • Carlstedt T, Anand P, Hallin RG, Misra PV, Norén G, Seferlis T (2000) Spinal root repair and reimplantation of avulsed ventral roots into the spinal cord after brachial plexus injury. J Neurosurg 93:237–247

    PubMed  CAS  Google Scholar 

  • Chai H, Wu W, So K-F, Yip HK (2000) Survival and regeneration of motoneurons in adult rats by reimplantation of ventral root following spinal root avulsion. Neuroreport 11:1249–1252

    PubMed  CAS  Google Scholar 

  • Coggeshall RE, Lekan HA (1996) Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J Comp Neurol 364:6–15

    Article  PubMed  CAS  Google Scholar 

  • Cullheim S, Kellerth JO (1978) A morphological study of the axons and recurrent axon collaterals of cat sciatic alpha-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 178:537–557

    Article  PubMed  CAS  Google Scholar 

  • Cullheim S, Carlstedt T, Lindå H, Risling M, Ulfhake B (1989) Motoneurons reinnervate skeletal muscle after ventral root implantation into the spinal cord of the cat. Neuroscience 29:725–734

    Article  PubMed  CAS  Google Scholar 

  • Cullheim S, Carlstedt T, Risling M (1999) Axon regeneration of spinal motoneurons following a lesion at the cord-ventral root interface. Spinal Cord 37(12):811–819

    Article  PubMed  CAS  Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    PubMed  ADS  CAS  Google Scholar 

  • Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VM, Persson H (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465

    Article  PubMed  CAS  Google Scholar 

  • Grimpe B, Silver J (2002) The extracellular matrix in axon regeneration. Prog Brain Res 137:333–349

    PubMed  CAS  Google Scholar 

  • Gu H-Y, Chai H, Zhang J-Y, Yao Z-B, Zhou L-H, Wong W-M, Bruce I, Wu W-T (2004) Survival, regeneration and functional recovery of motoneurons in adult rats by reimplantation of ventral root following spinal root avulsion. Eur J Neurosci 19:2123–2131

    Article  PubMed  Google Scholar 

  • Guest JD, Rao A, Olson L, Bunge MB, Bunge RP (1997) The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 148:502–522

    Article  PubMed  CAS  Google Scholar 

  • Hallin RG, Carlstedt T, Nilsson-Remahl I, Risling M (1999) Spinal cord implantation of avulsed ventral roots in primates; correlation between restored motor function and morphology. Exp Brain Res 124:304–310

    Article  PubMed  CAS  Google Scholar 

  • Havton LA, Kellerth J-O (1987) Regeneration by supernumerary axons with synaptic terminals in spinal motoneurons of cats. Nature 325(6106):711–714

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hoang TX, Havton LA (2005) Novel Repair Strategies to Restore Bladder Function Following Cauda Equina/Conus Medullaris Injuries. Prog Brain Res (in press)

  • Hoang TX, Nieto JH, Tillakaratne NJK, Havton LA (2003) Autonomic and motor neuron death is progressive and parallel in a lumbosacral ventral root avulsion model of cauda equina injury. J Comp Neurol 467:477–486

    Article  PubMed  Google Scholar 

  • Hoffmann CFE, Marani E, Van Dijk JG, Kamp WVD, Thoemer RTWM (1996) Reinnervation of avulsed and reimplanted ventral rootlets in the cervical spinal cord of the cat. J Neurosurg 84:234–243

    PubMed  CAS  Google Scholar 

  • Koliatsos VE, Price WL, Pardo CA, Price DL (1994) Ventral root avulsion: an experimental model of death of adult motor neurons. J Comp Neurol 342:35–44

    Article  PubMed  CAS  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    Article  PubMed  CAS  Google Scholar 

  • Lindå H, Risling M, Cullheim S (1985) ‘Dendraxons’ in regenerating motoneurons in the cat: do dendrites generate new axons after central axotomy? Brain Res 358(1–2):329–333

    Article  PubMed  Google Scholar 

  • Ma J, Novikov LN, Wiberg M, Kellerth JO (2001) Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp Brain Res 139:216–223

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    Article  PubMed  CAS  Google Scholar 

  • Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230(1):133–141

    Article  PubMed  CAS  Google Scholar 

  • Moossy JJ, Nashold BS Jr, Osborne D, Friedman AH (1987) Conus medullaris nerve root avulsions. J Neurosurg 66:835–841

    PubMed  CAS  Google Scholar 

  • Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137:313–332

    PubMed  CAS  Google Scholar 

  • Morrow DR, Campbell G, Lieberman AR, Anderson PN (1993) Differential regenerative growth of CNS axons into tibial and peroneal nerve grafts in the thalamus of adult rats. Exp Neurol 120:60–69

    Article  PubMed  CAS  Google Scholar 

  • Naveilhan P, Elshamy WM, Ernfors P (1997) Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci 9:1450–1460

    PubMed  CAS  Google Scholar 

  • Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23:83–91

    Article  PubMed  CAS  Google Scholar 

  • Novikov L, Novikova L, Kellerth J-O (1995) Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci Lett 200:45–48

    Article  PubMed  CAS  Google Scholar 

  • Novikov L, Novikova L, Kellerth JO (1997) Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 79:765–774

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurons. Nature 309:791–793

    Article  PubMed  ADS  CAS  Google Scholar 

  • Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264–265

    Article  PubMed  ADS  CAS  Google Scholar 

  • Richardson PM, Issa VM, Aguayo AJ (1984) Regeneration of long spinal axons in the rat. J Neurocytol 13:165–182

    Article  PubMed  CAS  Google Scholar 

  • Rose PK, MacDermid V, Joshi M, Neuber-Hess M (2001) Emergence of axons from distal dendrites of adult mammalian neurons following a permanent axotomy. Eur J Neurosci 13(6):1166–1176

    Article  PubMed  CAS  Google Scholar 

  • Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation I. An analysis in tissue culture of proliferation in development, Wallerian degeneration, and direct injury. J Cell Biol 84:739–752

    Article  PubMed  CAS  Google Scholar 

  • Schrøder HD (1980) Organization of the motoneurons innervating the pelvic muscles of the male rat. J Comp Neurol 192:567–587

    Article  PubMed  Google Scholar 

  • Selzer ME (2003) Promotion of axonal regeneration in the injured CNS. Lancet Neurol 2:157–166

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ, Kodama RT (1991) Reinnervation of denervated skeletal muscle by central neurons regenerating via ventral roots implanted into the spinal cord. Brain Res 551:221–229

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski MH, Gage FH (1995) Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery. Proc Natl Acad Sci USA 92:4621–4625

    PubMed  ADS  CAS  Google Scholar 

  • West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61

    Article  PubMed  CAS  Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134:261–272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by: NIH/ NINDS NS042719, The Roman Reed Funds for Spinal Cord Injury Research of California, The Paralysis Project of America, The UCLA School of Medicine/ Stein-Oppenheimer Endowment Award, and The ARCS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif A. Havton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang, T.X., Havton, L.A. A single re-implanted ventral root exerts neurotropic effects over multiple spinal cord segments in the adult rat. Exp Brain Res 169, 208–217 (2006). https://doi.org/10.1007/s00221-005-0137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0137-4

Keywords

Navigation