Skip to main content
Log in

The right hand knows what the left hand is feeling

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The mislocalization profile, describing incorrect localization of faint tactile stimuli to different regions of the body, has been shown to provide insight into the processing of tactile stimuli. Interhemispheric somatosensory processing was examined in 15 subjects by studying the interference of left-hand stimulation on right-hand perception. In different conditions supra-threshold interference stimuli were applied to the left thumb or little finger either 200 or 500 ms prior to the application of a test stimulus on the right hand. Data show that interference stimuli applied to the left hand massively altered localization responses for stimuli applied to the right side. Stimulating the left thumb yielded an increased number of mislocalizations to the right thumb. Similarly, stimulating the left little finger caused a shift in localization responses towards the right ring finger. Results support the hypothesis that interaction of somatosensory information originating from different sides of the body follows a somatotopic organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–e
Fig. 3

Similar content being viewed by others

References

  • Braun C, Schweizer R, Elbert T, Birbaumer N, Taub E (2000) Differential Activation in Somatosensory Cortex for Different Discrimination Tasks. J Neurosci 20:446–450

    CAS  PubMed  Google Scholar 

  • Braun C, Haug M, Wiech K, Birbaumer N, Elbert T, Roberts LE (2002) Functional organization of primary somatosensory cortex depends on the focus of attention. NeuroImage 17:1451–1458

    Article  PubMed  Google Scholar 

  • Chen LM, Friedman RP, Ramsden BM, LaMotte RH, Roe AW (2001) Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86:3011–3029

    CAS  PubMed  Google Scholar 

  • Godde B, Hilger T, von Seelen W, Berkenfeld T, Dinse HR (1995) Optical imaging of rat somatosensory cortex reveals representational overlap as a topographic principle. Neuroreport 29:24–28

    Google Scholar 

  • Hämälainen H, Kekoni J, Sams M, Reinikainen K, Näätanen R (1990) Human somatosensory evoked potentials to mechanical pulses and vibration: contributions of SI and SII somatosensory cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol 75:13–21

    PubMed  Google Scholar 

  • Hansson T, Brismar T (1999) Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:29–32

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Harris IM, Diamond ME (2001) The topography of tactile learning in humans. J Neurosci 21:1056–1061

    CAS  PubMed  Google Scholar 

  • Harris JA, Thein T, Clifford CW (2004) Dissociating detection from localization of tactile stimuli. J Neurosci 24:3683–3693

    Article  CAS  PubMed  Google Scholar 

  • Hoshiyama M, Kakigi R, Koyama S, Watanabe S, Shimojo M (1997) Activity in posterior parietal cortex following somatosensory stimulation in man: magnetoencephalographic study using spatio-temporal source analysis. Brain Topogr 10:23–30

    Article  CAS  PubMed  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337

    Google Scholar 

  • Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556

    Article  CAS  PubMed  Google Scholar 

  • Iwamura Y, Tanaka M, Iriki A, Taoka M, Taoka M (2002) Processing of tactile and kinesthetic signals from bilateral sides of the body in the postcentral gyrus of awake monkeys. Behav Brain Research 135:185–190

    Article  CAS  Google Scholar 

  • Jones EG, Coulter JD, Hendry SH (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–347

    CAS  PubMed  Google Scholar 

  • Jones EG, Schwark HD, Callahan PA (1986) Extent of ipsilateral representations in the ventral posterior medial nucleus of the monkey thalamus. Exp Brain Res 63:310–320

    Article  CAS  PubMed  Google Scholar 

  • Killackey HP, Gould HJI, Cusick CG, Pons TP, Kaas JH (1983) The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of New and Old World monkeys. J Comp Neurol 219:384–419

    CAS  PubMed  Google Scholar 

  • Moore CI, Nelson SB (1998) Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 80:2882–2892

    Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  • Penfield W, Rasmussen AT (1950) The cerebral cortex of man. Macmillan, New York

  • Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Map 21:236–246

    Article  Google Scholar 

  • Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11:463–473

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler A, Salmelin R, Salenius S, Jousmaki V, Hari R (1995) Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett 200:25–28

    Article  CAS  PubMed  Google Scholar 

  • Schweizer R, Maier M, Braun C, Birbaumer N (2000) Distribution of mislocalization at the fingers of the human hand. Somatosens Mot Res 17:309–316

    Article  CAS  PubMed  Google Scholar 

  • Schweizer R, Braun C, Fromm C, Wilms A, Birbaumer N (2001) The distribution of mislocalization across fingers demonstrates training-induced neuroplastic changes in somatosensory cortex. Exp Brain Res 139:435–442

    Article  CAS  PubMed  Google Scholar 

  • Shoham D, Grinvald A (2001) The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging. J Neurosci 21:6820–6835

    CAS  PubMed  Google Scholar 

  • Shuler M, Krupa D, Nicolelis M (2001) Bilateral integration of whisker information in the primary somatosensory cortex of rats. J Neurosci 21:5251–5261

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biomentry. Freeman, New York

  • Sur M, Merzenich MM, Kaas JH (1980) Magnification, receptive field area, and hypercolumn size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44:295–311

    CAS  PubMed  Google Scholar 

  • Sur M, Garraghty PE, Bruce CJ (1985) Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in area 3b and 1. Brain Res 342:391–395

    Article  CAS  PubMed  Google Scholar 

  • Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality. In: Kenshalo DR Sr (ed) The skin senses. Charles L Thomas, Springfield, pp 195–222

  • Weinstein S, Sersen EA (1961) Tactual sensitivity as a function of handedness and laterality. J Comp Physiol Psychol 54:665–669

    CAS  PubMed  Google Scholar 

  • Weller RE, Sur M, Kaas JH (1987) Callosal and ipsilateral cortical connections of the body surface representations in SI and SII of tree shrews. Somatosens Res 5:107–133

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We owe many thanks to Wolfgang Kern for constructing the tactile stimulator and to Dipl. Ing. Jürgen Dax for developing the stimulus control electronics and software. Research was supported by the Deutsche Forschungsgemeinschaft SFB 550/C6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, C., Hess, H., Burkhardt, M. et al. The right hand knows what the left hand is feeling. Exp Brain Res 162, 366–373 (2005). https://doi.org/10.1007/s00221-004-2187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2187-4

Keywords

Navigation