Skip to main content
Log in

Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) induces phosphenes and disrupts visual perception when applied over the occipital pole. Both the underlying mechanisms and the brain structures involved are still unclear. In the first part of this study we show that the masking effect of TMS differs to masking by light in terms of the psychometric function. Here we investigate the emergence of phosphenes in relation to perimetric measurements. The coil positions were measured with a stereotactic positioning device, and stimulation sites were characterized in four subjects on the basis of individual retinotopic maps measured by with functional magnetic resonance imaging. Phosphene thresholds were found to lie a factor of 0.59 below the stimulation intensities required to induce visual masking. They covered the segments in the visual field where visual suppression occurred with higher stimulation intensity. Both phosphenes and transient scotomas were found in the lower visual field in the quadrant contralateral to the stimulated hemisphere. They could be evoked from a large area over the occipital pole. Phosphene contours and texture remained quite stable with different coil positions over one hemisphere and did not change with the retinotopy of the different visual areas on which the coil was focused. They cannot be related exclusively to a certain functionally defined visual area. It is most likely that both the optic radiation close to its termination in the dorsal parts of V1 and back-projecting fibers from V2 and V3 back to V1 generate phosphenes and scotomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afra J, Mascia A, Gerard P, Maertens de Noordhout A, Schoenen J (1998) Interictal cortical excitability in migraine—a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol 44:209–215

    Google Scholar 

  • Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74:401–416

    Article  CAS  Google Scholar 

  • Amassian VE, Eberle L, Maccabee PJ, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 85:291–301

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Maccabee PJ, Cracco RQ, Cracco JB, Somasundaram M, Rothwell JC, Eberle L, Henry K, Rudell AP (1994) The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalogr Clin Neurophysiol 93:21–26

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84

    Article  CAS  PubMed  Google Scholar 

  • Aurora SK, Ahmad BK, Welch KMA, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114

    Google Scholar 

  • Beckers G, Hömberg V (1991) Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex. Exp Brain Res 87:421–432

    CAS  PubMed  Google Scholar 

  • Beckers G, Zeki S (1995) The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118:49–60

    PubMed  Google Scholar 

  • Bohotin V, Fumal A, Vandenheede M, Gerard P, Bohotin C, de Noordhout AM, Schoenen J (2002) Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125:912–922

    Article  CAS  PubMed  Google Scholar 

  • Boroojerdi B, Meister IG, Foltys H, Sparing R, Cohen LG, Töpper R (2002) Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clin Neurophysiol 113:1501–1504

    Article  PubMed  Google Scholar 

  • Brindley GS, Donaldson PE, Falconer MA, Rushton DN (1972) The extent of the region of occipital cortex that when stimulated gives phosphenes fixed in the visual field. J Physiol (Lond) 225:57P–58P

  • Corthout E, Uttl B, Walsh V, Hallett M, Cowey A (1999) Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. Neuroreport 10:2631–2634

    CAS  PubMed  Google Scholar 

  • Corthout E, Uttl B, Juan CH, Hallett M, Cowey A (2000) Suppression of vision by transcranial magnetic stimulation: a third mechanism. Neuroreport 11:2345–2349

    CAS  PubMed  Google Scholar 

  • Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport 11:3269–3273

    CAS  PubMed  Google Scholar 

  • Epstein CM, Zangaladze A (1996) Magnetic coil suppression of extrafoveal visual perception using disappearance targets. J Clin Neurophysiol 13:242–246

    Article  CAS  PubMed  Google Scholar 

  • Epstein CM, Schwartzberg DG, Davey KR, Sudderth DB (1990) Localizing the site of magnetic brain stimulation in humans. Neurology 40:666–670

    Google Scholar 

  • Epstein CM, Verson R, Zangaladze A (1996) Magnetic coil suppression of visual perception at an extracalcarine site. J Clin Neurophysiol 13:247–252

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  CAS  PubMed  Google Scholar 

  • Goebel R, Khorramsefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision—direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Gothe J, Brandt SA, Irlbacher K, Roricht S, Sabel BA, Meyer BU (2002) Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125:479–490

    Article  PubMed  Google Scholar 

  • Gregory RL (1970) The intelligent eye. McGraw-Hill, New York

  • Hasnain MK, Fox PT, Woldorff MG (1998) Intersubject variability of functional areas in the human visual cortex. Hum Brain Mapp 6:301–315

    Article  CAS  PubMed  Google Scholar 

  • Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    Article  CAS  PubMed  Google Scholar 

  • Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284

    CAS  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol (Lond) 466:521–534

  • Jalinous R (1991) Technical and practical aspects of magnetic nerve stimulation. J Clin Neurophysiol 8:10–25

    CAS  PubMed  Google Scholar 

  • Kamitani Y, Shimojo S (1999) Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nat Neurosci 2:767–771

    Article  CAS  PubMed  Google Scholar 

  • Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Beck S (2002) Phosphene thresholds evoked by transcranial magnetic stimulation are insensitive to short-lasting variations in ambient light. Exp Brain Res 145:407–410

    Article  PubMed  Google Scholar 

  • Kammer T, Nusseck HG (1998) Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? Neuropsychologia 36:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Erb M, Beck S, Grodd W (2000) Multimodal mapping of the visual cortex: comparison of functional MRI and stereotactic TMS. Eur J Neurosci 12 [Suppl] 11:192

  • Kammer T, Beck S, Erb M, Grodd W (2001a) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001b) Motor thresholds in humans. A transcranial magnetic stimulation study comparing different pulseforms, current directions and stimulator types. Clin Neurophysiol 112:250–258

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Puls K, Strasburger H, Hill NJ, Wichmann FA (2004) TMS in the visual system. I. The psychophysics of visual suppression. Exp Brain Res (http://dx.doi.org/10.1007/s00221-004-1991-1)

  • Kastner S, Paul I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over the occipital lobe. Exp Brain Res 118:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Ganis G, Sukel KE, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Hong SB, Seo DW, Tae WS, Hong SC (2000) Mapping of functional organization in human visual cortex—electrical cortical stimulation. Neurology 54:849–854

    Google Scholar 

  • Maccabee PJ, Amassian VE, Eberle LP, Cracco RQ (1993) Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J Physiol (Lond) 460:201–219

  • Marg E, Rudiak D (1994) Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom Vis Sci 71:301–311

    CAS  PubMed  Google Scholar 

  • Meyer BU, Diehl RR, Steinmetz H, Britton TC, Benecke R (1991) Magnetic stimuli applied over motor cortex and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr Clin Neurophysiol Suppl 43:121–134

    CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512

    CAS  PubMed  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man: a clinical study of localization and function. Macmillan, New York

    Google Scholar 

  • Potts GF, Gugino LD, Leventon ME, Grimson WEL, Kikinis R, Cote W, Alexander E, Anderson JE, Ettinger GJ, Aglio LS, Shenton ME (1998) Visual hemifield mapping using transcranial magnetic stimulation coregistered with cortical surfaces derived from magnetic resonance images. J Clin Neurophysiol 15:344–350

    Article  CAS  PubMed  Google Scholar 

  • Ray PG, Meador KJ, Epstein CM, Loring DW, Day LJ (1998) Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol 15:351–357

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    CAS  PubMed  Google Scholar 

  • Sparing R, Mottaghy FM, Ganis G, Thompson WL, Töpper R, Kosslyn SM, Pascual-Leone A (2002) Visual cortex excitability increases during visual mental imagery—a TMS study in healthy human subjects. Brain Res 938:92–97

    Article  CAS  PubMed  Google Scholar 

  • Stewart LM, Walsh V, Rothwell JC (2001) Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia 39:415–419

    Article  CAS  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

Download references

Acknowledgements

We thank Sandra Beck, Hans-Günther Nusseck, and Kuno Kirschfeld, for support and for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammer, T., Puls, K., Erb, M. et al. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160, 129–140 (2005). https://doi.org/10.1007/s00221-004-1992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1992-0

Keywords

Navigation