Skip to main content
Log in

Genioglossal hypoglossal motoneurons contact substance P-like immunoreactive nerve terminals in the cat: a dual labeling electron microscopic study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study investigated the synaptic interactions between hypoglossal motoneurons that project to the genioglossus muscle and substance P (SP) containing immunoreactive nerve terminals. Cholera toxin B conjugated to horseradish peroxidase (CTB-HRP) was injected into the right half of the genioglossus muscle in four anesthetized cats. Two days later, the animals were perfused with acrolein fixative. Tetramethylbenzidine (TMB) was the chromogen used to detect retrogradely labeled cells containing CTB-HRP. The tissues were then processed for immunocytochemisty using an antiserum raised against SP with diaminobenzidine (DAB) as the chromogen. At the light microscopic level, labeled cells were observed primarily ipsilaterally in ventral and ventrolateral subdivisions of the hypoglossal nucleus. The majority of these labeled cells were observed at the level of the area postrema. At the electron microscopic level, SP-like immunoreactive nerve terminals formed synaptic contacts with retrogradely labeled dendrites and perikarya. Nineteen percent of the terminals that contacted retrogradely labeled cells contained SP. These are the first ultrastructural studies demonstrating synaptic interactions between protruder hypoglossal motoneurons and SP terminals. These studies demonstrate that hypoglossal motoneurons which innervate the major protruder muscle of the tongue, the genioglossus muscle, may be modulated by SP. Thus, SP may play a role in the control of protrusive movements of the tongue acting via neurokinin receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4

Similar content being viewed by others

References

  • Aldes LD, Chronister RB, Marco LA (1988a) Distribution of glutamic acid decarboxylase and gamma-aminobutyric acid in the hypoglossal nucleus in the rat. J Neurosci Res 19:343–348

    CAS  PubMed  Google Scholar 

  • Aldes LD, Chronister RB, Shelton C, Haycock JW, Marco LA, Wong DL (1988b) Catecholamine innervation of the rat hypoglossal nucleus. Brain Res Bull 21:305–312

    Article  CAS  PubMed  Google Scholar 

  • Aldes LD, Chronister RC, Marco LA, Haycock JW, Thibault J (1988c) Differential distribution of biogenic amines in the hypoglossal nucleus of the rat. Exp Brain Res 73:305–314

    CAS  PubMed  Google Scholar 

  • Aldes LD, Marco LA, Chronister RB (1989) Serotonin-containing axon terminals in the hypoglossal nucleus of the rat. An immuno-electronmicroscopic study. Brain Res Bull 23:249–256

    Article  PubMed  Google Scholar 

  • Aldes LD, Shaw B, Chronister RB, Haycock JW (1990) Catecholamine-containing axon terminals in the hypoglossal nucleus of the rat: an immuno-electronmicroscopic study. Exp Brain Res 81:167–178

    CAS  PubMed  Google Scholar 

  • Altschuler SM, Bao X, Miselis RR (1994) Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. J Comp Neurol 342:538–550

    CAS  PubMed  Google Scholar 

  • Barnard JW (1940) The hypoglossal complex of vertebrates. J Comp Neurol 72:489–524

    Google Scholar 

  • Berger AJ, Bayliss DA, Viana F (1992) Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin. Neurosci Lett 143:164–168

    Article  CAS  PubMed  Google Scholar 

  • Boone TB, Aldes LD (1984) The ultrastructure of two distinct neuron populations in the hypoglossal nucleus of the rat. Exp Brain Res 54:321–326

    CAS  PubMed  Google Scholar 

  • Chen Z, Hedner J, Hedner T (1990a) Substance P in the ventrolateral medulla oblongata regulates ventilatory responses. J Appl Physiol 68:2631–2639

    CAS  Google Scholar 

  • Chen Z, Hedner J, Hedner T (1990b) Local effects of substance P on respiratory regulation in the rat medulla oblongata. J Appl Physiol 68:693–699

    CAS  Google Scholar 

  • Connaughton M, Priestley JV, Sofroniew MV, Eckenstein NF, Cuello AC (1986) Inputs to motoneurones in the hypoglossal nucleus of the rat: light and electron microscopic immunocytochemistry for choline acetyltransferase, substance P and enkephalins using monoclonal antibodies. Neurosci 17:205–224

    CAS  PubMed  Google Scholar 

  • Cooper MH (1981) Neurons of the hypoglossal nucleus of the rat. Otolaryngol Head Neck Surg 89:10–15

    CAS  PubMed  Google Scholar 

  • Cuello AC, Kanazawa (1978) The distribution of substance P immunoreactive fibers in the rat central nervous system. J Comp Neurol 178:129–156

    CAS  Google Scholar 

  • Gatti PJ, Richardson KA (2001) Synaptic interactions of retrogradely labeled genioglossus motoneurons with substance P-like immunoreactive terminals in the cat: a double labeling immunoelectron microscopic study. Respir Res 2: P28

    Article  Google Scholar 

  • Gatti PJ, Shirahata M, Johnson TA, Massari VJ (1995) Synaptic interactions of substance P immunoreactive nerve terminals in the baro- and chemoreceptor reflexes. Brain Res 693:133–147

    Article  CAS  PubMed  Google Scholar 

  • Gatti PJ, Johnson TA, Shirahata M, Massari VJ (1996) Synaptic interactions of retrogradely labeled hypoglossal motoneurons with substance P-like immunoreactive nerve terminals in the cat: a dual-labeling electron microscopic study. Exp Brain Res 110:175–182

    CAS  PubMed  Google Scholar 

  • Gatti PJ, Lewellyn-Smith IJ, Sun Q-J, Chalmers J, Pilowsky PM (1999) Substance P-immunoreactive boutons closely appose inspiratory protruder hypoglossal motoneurons in the cat. Brain Res 834:155–159

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Goldberg SJ, McClung JR (1996) Compartmental organization of styloglossus and hyoglossus motoneurons in the hypoglossal nucleus of the rat. Brain Res 728:277–280

    CAS  Google Scholar 

  • Henry JN, Manaker S (1998) Co-localization of substance P or enkephalin in serotonergic afferents to the hypoglossal nucleus. J Comp Neurol 391:491–508

    Article  CAS  PubMed  Google Scholar 

  • Hinrichsen CFL, Weston S (1999) Substance P in the hypoglossal nucleus of the rat. Arch Oral Biol 44:683–691

    Article  CAS  PubMed  Google Scholar 

  • Kachidian P, Poulat P, Marlier L, Privat A (1991) Immunohistochemical evidence for the co-existence of substance P, thyrotropin releasing hormone, gamma-aminobutyric acid, met-enkephalin and leu-enkephalin in the serotonergic neurons of the caudal raphe nuclei: a dual labeling study in the rat. J Neurosci Res 30:521–530

    CAS  PubMed  Google Scholar 

  • Krammer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res 170:533–537

    Article  CAS  PubMed  Google Scholar 

  • Kubin L, Tojima H, Davies RO, Pack AI (1992) Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat. Neurosci Lett 139:243–248

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl A, Hokfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat-I. Cell bodies and nerve terminals. Neurosci 3:861–943

    CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Pilowsky P, Minson JB (1993) The tungstate stabilized tetramethylbenzidine reaction for light and electron microscopic immunocytochemistry and for revealing biocytin-filled neurons. J Neurosci Meth 26:27–40

    Article  Google Scholar 

  • Massari VJ, Shirahata M, Johnson TA, Lauenstein J-M Gatti PJ (1998) Carotid sinus nerve terminals which are substance P immunoreactive are found in the dorsolateral nucleus of the tractus solitarius. Brain Res 785:329–340

    Article  CAS  PubMed  Google Scholar 

  • McClung F, Goldberg SJ (1999) Organization of motoneurons in the dorsal hypoglossal nucleus that innervate the retrusor muscles of the tongue in the rat. Anat Rec 254:222–230

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Yoshida Y, Hirano M, Shin T, Kanaseki T (1981) Central location of the motoneurons supplying the thyrohyoid and the geniohyoid muscles as demonstrated by horseradish peroxidase method. Brain Res 219:423–427

    Google Scholar 

  • Odutola AB (1976) Cell grouping and Golgi architecture of the hypoglossal nucleus of the rat. Exp Neurol 52:356–371

    CAS  PubMed  Google Scholar 

  • Peters AA, Palay SL, Webster HD (1990) Fine structure of the nervous system: neurons and their supporting cells. Oxford Univ Press, New York

    Google Scholar 

  • Sokoloff AJ (1991) Musculotopic organization of the hypoglossal nucleus in the grass frog, Rana pipiens. J Comp Neurol 308:505–512

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Kojima M, Matsuura T, Sano Y (1983) Serotonergic innervation on the motoneurons in the mammalian brainstem. Anat Embryol 167:321–333

    CAS  PubMed  Google Scholar 

  • Uemura M, Matsuda K, Kume M, Takeuchi Y, Matsushima R, Mizuno N (1979) Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Neurosci Lett 13:99–104

    Article  CAS  PubMed  Google Scholar 

  • Uemura-Sumi M, Mizuno N, Nomura S, Iwahori N, Takeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22:31–35

    Google Scholar 

  • Uemura-Sumi M, Itoh M, Mizuno N (1988) The distribution of hypoglossal motoneurons in the dog, rabbit and rat. Anat Embryol (Berl) 177:389–394

    Google Scholar 

  • Wan XS, Trojanowski JQ, Gonatas JO, Liu CN (1982) Cytoarchitecture of the extranuclear and commissural dendrites of hypoglossal nucleus neurons as revealed by conjugates of horseradish peroxidase with cholera toxin. Exp Neurol 78:167–175

    CAS  Google Scholar 

  • Yasuda K, Robinson DM, Selvaratnam SR, Walsh CW, McMorland AJ, Funk GD (2001) Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in the neonatal mouse. J Physiol (Lond) 554:447–464

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIDCD (DC4001 to Dr. Gatti). Additional support was obtained from the Burroughs Wellcome Fund, American Physiological Society, Department of Pharmacology and Howard University College of Medicine. The authors would like to thank Drs. Virginia Pickel, Teri Milner and John Massari for their assistance in interpreting the photomicrographs, Dr. Musa Haxhiu for reviewing this manuscript and Dr. Greg Funk for helpful insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Gatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, K.A., Gatti, P.J. Genioglossal hypoglossal motoneurons contact substance P-like immunoreactive nerve terminals in the cat: a dual labeling electron microscopic study. Exp Brain Res 154, 327–332 (2004). https://doi.org/10.1007/s00221-003-1672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1672-5

Keywords

Navigation