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Abstract

We propose a general framework for quantum field theory on the de Sitter space-time (i.e. for
local field theories whose truncated Wightman functions are not required to vanish). By requiring
that the fields satisfy a weak spectral condition, formulated in terms of the analytic continuation
properties of their Wightman functions, we show that a geodesical observer will detect in the corre-
sponding “vacuum” a blackbody radiation at temperature T = 1/2πR. We also prove the analogues
of the PCT, Reeh-Schlieder and Bisognano-Wichmann theorems.

1 Introduction

It is known that, when quantizing fields on a gravitational background, it is generally impossible to
characterize the physically relevant vacuum states as the fundamental states for the energy in the usual
sense, since there is no such thing as a global energy operator.

In the absence of the analogue of an energy-momentum spectrum condition [25, 32], several authors
have formulated various alternative prescriptions to select, among the possible representations (vacua)
of a quantum field theory, those which can have a meaningful physical interpretation; the adiabatic
prescription, the local Hadamard condition, and the conformal criterion, (see [2, 26] and references
therein) have proven to be useful for characterizing linear field theories with vanishing truncated n-
point functions (i.e. free field theories) on various kinds of space-times.

It is worthwhile to stress immediately that the relevant choice of the vacuum of a quantum field theory
on a curved space-time has striking consequences even in the case of free fields: the most celebrated
examples are the Hawking thermal radiation on a black-hole background [21, 22, 30], the Unruh effect
[33] and the Gibbons and Hawking thermal effect on a de Sitter space-time [16].

As regards interacting field theories on a gravitational background, (i.e. field theories with non-
vanishing truncated n-point functions), much less is known. While the property of locality (or local
commutativity) of the field observable algebra (i.e. the commutativity of any couple of field observables
localized in space-like separated regions) remains a reasonable postulate for all space-time manifolds
which are globally hyperbolic, the problem of specifying a representation of the field algebra becomes
still more undetermined than in the free-field case. In the latter, the indeterminacy is confined in
the two-point functions of the fields, namely in the splitting of the given (c-number) commutators
into the correlators at permuted couples of points. In the general interacting case, the indeterminacy
of the possible representations is now encoded (in an unknown way) in the properties of the whole
sequence of n-point functions of the fields. If the gravitational background is only considered as a
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general (globally hyperbolic and pseudo-Riemannian) differentiable manifold, this huge indeterminacy
cannot be completely reduced by imposing a (well-justified) principle of stability which postulates the
existence at each point of the manifold of a Minkowskian scaling limit of the theory satisfying the spectral
condition (see [19] and references therein); nor can it be reduced in an operational way by adding the
general requirement of a local definiteness criterion (based on the principles of local quantum physics
[19]). In such a general context, one should however mention the recent use of microlocal analysis which
has allowed the introduction of a wave front set approach to the spectral condition [29, 12]; after having
supplied a simple characterization of the free-field Hadamard states, this promising approach has in its
program to give information on the n-point functions of interacting fields in perturbation theory.

On the other side, starting from the remark that in Minkowskian theories the spectral condition can
be expressed in terms of analyticity properties of the n-point functions in the complexified space-time
manifold [25, 32], one can defend the viewpoint that it may be of particular interest to study quantum
field theory on an analytic gravitational background. As a matter of fact, there is one model of analytic
curved universe, and actually the simplest one, that offers the unique possibility of formulating a global
spectral condition for interacting fields which is very close to the usual spectral condition of Minkowski
QFT: this is the de Sitter space-time.

The de Sitter space-time can be represented as a d-dimensional one-sheeted hyperboloid embedded
in a Minkowski ambient space Rd+1 and it can also be seen as a one-parameter deformation of a d-
dimensional Minkowski space-time involving a length R. The Lorentz group of the ambient space acts as
a relativity group for this space-time, and the very existence of this (maximal) symmetry group explains
the popularity of the de Sitter universe as a convenient simple model for developing techniques of QFT
on a gravitational background. Moreover, there has been a regain of interest in the de Sitter metric in
the last years, since it has been considered to play a central role in the inflationary cosmologies (see
[27] and references therein): a possible explanation of phenomena occurring in the very early universe
then relies on an interplay between space-time curvature and thermodynamics and a prominent role is
played by the mechanisms of symmetry breaking and restoration in a de Sitter QFT.

The geometrical properties of de Sitter space-time and of its complexification actually make it possible
to formulate a general approach to QFT on this universe which closely parallels the Wightman approach
[25, 32] to the Minkowskian QFT. In fact, it is not only the existence of a simple causal structure
(inherited from the ambient Minkowski space) and of a global symmetry group (playing the same role
as the Poincaré group) on the real space-time manifold which are similar; but the complexified manifold
itself is equipped with domains which are closely similar to the tube domains of the complex Minkowski
space. Since these Minkowskian tubes play a crucial role for expressing the spectral condition in terms
of analyticity properties of the n-point functions of the theory, the previous geometrical remark strongly
suggests that analogous complex domains might be used for a global formulation of the spectral condition
in de Sitter quantum field theory. This approach has been in fact introduced and used successfully in a
study of general two-point functions on de Sitter space-time [6, 8, 9, 28]. As a by-product, it has been
shown [9] that a satisfactory characterization of generalized free fields (GFF) on de Sitter space-time,
including the preferred family of de Sitter invariant Klein-Gordon field theories (known as Euclidean
[16] or Bunch-Davies [11] vacua) can be given in terms of the global analytic structure of their two-
point functions in the complexified de Sitter manifold. Moreover, all these theories of GFF were shown
to be equivalently characterized by the existence of thermal properties of Gibbons-Hawking type, the
temperature T = (2πR)−1 being induced by the curvature of the space.

In this paper, we will show that the same ideas and methods can be applied with similar results to
a general approach to the theory of interacting quantum fields in de Sitter space-time. In fact, we shall
work out an axiomatic program (already sketched at the end of [9]) in which the “spectral condition”
is replaced by appropriate global analyticity properties of the n-point vacuum expectation values of the
fields (or “Wightman distributions”) in the complexified de Sitter manifold. These postulated analyticity
properties are similar to those implied by the usual spectral condition in the Minkowskian case, according
to the standard Wightman axiomatic framework. For simplicity, we shall refer to them as to the “weak
spectral condition”.

As a physical support to our weak spectral condition, we shall establish that all interacting fields
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which belong to this general framework admit a Gibbons-Hawking-type thermal interpretation with the
same specifications as the one obtained for GFF’s in [9]. In spite of this remarkable interpretative
discrepancy with respect to the Minkowskian quantum fields satisfying the usual spectral condition, we
shall see that such basic structural properties as the PCT and Reeh-Schlieder theorems are still valid
in this general approach to de Sitter QFT. Furthermore, our global analytic framework also supplies
an analytic continuation of the theory to the “Euclidean sphere” of the complexified de Sitter space-
time, which is the analogue of the (purely imaginary time) “Euclidean subspace” of the complexified
Minkowskian space-time. We will also show that the Wick powers of generalized free fields fit within the
framework and we have indication that our approach is relevant for the study of perturbation theory.
The latter will be developped elsewhere.

From a methodological viewpoint, one can distinguish (as in the Minkowskian case) two types of
developments which can be called according to a traditional terminology the “linear” and “non-linear
programs”.

The linear program, which deals exclusively with the exploitation of the postulates of locality, de
Sitter covariance and spectral condition (expressed by linear relations between the various permuted
n-point functions, for each fixed value of n) results in the definition of primitive analyticity domains
Dn for all the n-point (holomorphic) functions Wn(z1, ..., zn) of the theory. Each domain Dn is an
open connected subset of the topological product of n copies of the complexified de Sitter hyperboloid.
As in the Minkowskian case, each primitive domain Dn is not a “natural holomorphy domain”, but it
turns out that new regions of analyticity of the functions Wn (contained in the respective holomorphy
envelopes of the domains Dn and obtained by geometrical techniques of analytic completion) yield
important consequences for the corresponding field theories. A specially interesting example is the
derivation of analyticity properties of the functions Wn with respect to any subset of points zi =
zi(t) varying simultaneously on complex hyperbolae interpreted as the (complexified) trajectories of
a given time-like Killing vector field on the de Sitter universe. The periodicity with respect to the
imaginary part of the corresponding time-parameter t directly implies the interpretation of the obtained
analyticity properties of the functions Wn as a KMS-type condition; in view of the general analysis of
[20], this gives a thermal interpretation to all the de Sitter field theories considered. Since the above
mentioned analyticity property is completely similar to the one which emerges from the Bisognano-
Wichmann results in the Minkowskian theory [3] (see our comments below), we shall call the previous
result “Bisognano-Wichmann analyticity property of the n-point functions”.

The non-linear program, which exploits the Hilbert-space structure of the theory, relies in an essen-
tial way on the (quadratic) “positivity inequalities” to be satisfied by the whole sequence of n-point
Wightman distributions of the fields; these inequalities just express the existence of the vector-valued
distributions defined by the action of field operator products on the “GNS-vacuum state” of the theory.
An important issue to be recovered is the fact that these distributions are themselves the boundary
values of vector-valued holomorphic functions from certain complex domains; it is this mathematical
fact which is directly responsible for such important features of the theory as the Reeh-Schlieder prop-
erty. In the Minkowskian case, this vectorial analyticity is readily obtained from the spectral condition
by an argument based on the Laplace transformation. Here, we shall apply an alternative method for
establishing vectorial analyticity which directly makes use of the analyticity and positivity properties of
the n-point functions. It is based on a general study by V. Glaser [17, 18] of positive-type sequences of
holomorphic kernels in domains of Cm×Cn, whereby the analyticity of the Wightman n-point functions
“propagates” their positivity properties to the complex domain. This method is therefore applicable
not only to the Minkowskian and de Sitter QFT but also, in principle, to QFT on more general holo-
morphic (or real-analytic) space-time manifolds for which the spectral condition would be replaced by
an appropriate (possibly local) version of the analyticity properties of the Wightman functions.

The structure of the paper is the following: in Section 2, we introduce the notations and recall some
properties of the de Sitter spacetime and of its complexification; we then formulate our general principles
for the interacting fields on this universe, giving a special emphasis on the spectral condition which we
propose.

In Section 3 we explore various consequences of our general principles which are the analogues of
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standard results of the Minkowskian QFT in the Wightman framework. In particular, we establish
the existence of an analytic continuation of the Wightman n-point functions to corresponding primitive
domains of analyticity. The PCT property is also shown.

In Section 4 we come to the physical interpretation of the spectral condition. We first extend the
analytic aspect of the Bisognano-Wichmann theorem [3] to the de Sitter case. Then we show that the
thermal interpretation, already known for free field theories [16, 9], is still valid in this more general
case.

In section 5 we prove the validity of the Reeh and Schlieder property. The proof of the relevant
vectorial analyticity is given as an application of the above mentioned theorem of Glaser.

The paper is ended by three appendices where we discuss some more technical results.

2 QFT on the de Sitter spacetime: the spectral condition

We start with some notations and some well-known facts. The (d+1)-dimensional real (resp. complex)
Minkowski space is Rd+1 (resp. Cd+1) equipped with the scalar product x · y = x(0)y(0) − x(1)y(1) −
. . .− x(d)y(d) with, as usual, x2 = x · x. We thus distinguish a particular Lorentz frame and denote eµ

the (d + 1)-vector with e
(ν)
µ = δµ ν . In this special Lorentz frame, we also distinguish the (e0, ed)-plane

and the corresponding light-like coordinates u and v, namely we put:

x = (x(0), ~x, x(d)), ~x = (x(1), . . . , x(d−1)), (1)

u = u(x) = x(0) + x(d), v = v(x) = x(0) − x(d), (2)

and we introduce, for each λ = eζ ∈ C \ {0}, the special Lorentz transformation [λ] such that

u([λ]x) = λu(x), v([λ]x) = λ−1v(x), ~x([λ]x) = ~x(x), [eζ ] = exp ζ e0 ∧ ed. (3)

The future cone is defined in the real Minkowski space Rd+1 as the subset

V+ = −V− = {x ∈ Rd+1 : x(0) > 0, x · x > 0}

and the future light cone as C+ = ∂V+ = −C−. We denote x ≤ y the partial order (called causal order)
defined by V+, i.e. x ≤ y ⇔ y − x ∈ V+. The d-dimensional real (resp. complex) de Sitter space-time
with radius R is identified with the subset of the real (resp. complex) Minkowski space consisting of

the points x such that x2 = −R2 and is denoted Xd(R) or simply Xd (resp. X
(c)
d ). Thus Xd is the

one-sheeted hyperboloid

Xd = Xd(R) = {x ∈ Rd+1 : x(0)
2 − x(1)

2 − . . .− x(d)
2
= −R2} (4)

The causal order on Rd+1 induces the causal order on Xd. The future and past shadows of a given event
x in Xd are given by Γ+(x) = {y ∈ Xd : y ≥ x}, Γ−(x) = {y ∈ Xd : y ≤ x}. Note that if x2 = −R2 and
r2 = 0, then (x+ r)2 = −R2 is equivalent to x · r = 0, and remains true if r is replaced with t r for any
real t (the same holds in the complex domain.) Hence the boundary set

∂Γ(x) = {y ∈ Xd : (x− y)2 = 0} (5)

of Γ+(x)∪Γ−(x) is a cone (“light-cone”) with apex x, the union of all linear generators of Xd containing
the point x. Two events x and y of Xd are in “acausal relation”, or “space-like separated” if y 6∈
Γ+(x) ∪ Γ−(x), i.e. if x · y > −R2. The relativity group of the de Sitter space-time, called “de
Sitter group” in the following, is the connected Lorentz group of the ambient Minkowski space, i.e.
L↑+ = SO0(1, d) leaving invariant each of the sheets of the cone C = C+ ∪ C−. The connected complex

Lorentz group in d + 1 dimensions is denoted L+(C). We denote σ the L↑+-invariant volume form on
Xd given by ∫

f(x) dσ(x) =

∫
f(x) δ(x2 +R2) dx(0) ∧ . . . ∧ dx(d). (6)
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L↑+ acts transitively on Xd and L+(C) on X
(c)
d .

The familiar forward and backward tubes are defined in complex Minkowski space as T± = Rd+1 ±
iV+, and we denote

T+ = T+ ∩X(c)
d , T− = T− ∩X(c)

d . (7)

Since T+∪T− contains the “Euclidean subspace” Ed+1 = {z = (iy(0), x(1), . . . , x(d)) : (y(0), x(1), . . . , x(d)) ∈
Rd+1} of the complex Minkowski space-time Cd+1, the subset T+ ∪ T− of X

(c)
d contains the “Euclidean

sphere” Sd = {z = (iy(0), x(1), . . . x(d)) : y(0)
2
+ x(1)

2
+ . . .+ x(d)

2
= R2}.

We denote D(Xn
d ) (resp. S(Xn

d )) the space of functions on Xn
d which are restrictions to Xn

d of
functions belonging to D(Rn(d+1)) (resp. S(Rn(d+1))). As in the Minkowskian case, the Borchers
algebra B is defined as the tensor algebra over D(Xd). Its elements are terminating sequences of test-
functions f = (f0, f1(x1), . . . , fn(x1, . . . , xn), . . .), where f0 ∈ C and fn ∈ D(Xn

d ) for all n ≥ 1, the
product and ⋆ operations being given by

(fg)n =
∑

p, q∈N

p+q=n

fp ⊗ gq, (f⋆)n(x1, . . . , xn) = fn(xn, . . . , x1).

The action of the de Sitter group L↑+ on B is defined by f 7→ f{Λr}, where

f{Λr} = (f0, f1{Λr}, . . . , fn{Λr}, . . .), fn{Λr}(x1, . . . , xn) = fn(Λr
−1x1, . . . ,Λr

−1xn), (8)

Λr denoting any (real) de Sitter transformation.

A quantum field theory (we consider a single scalar field for simplicity) is specified by a continuous
linear functional W on B, i.e. a sequence {Wn ∈ D′(Xn

d )}n∈N where W0 = 1 and the {Wn}n>0 are
distributions (Wightman functions) required to possess the following properties:

1. (Covariance). Each Wn is de Sitter invariant, i.e.

〈Wn, fn{Λr}〉 = 〈Wn, fn〉 (9)

for all de Sitter transformations Λr. (This is equivalent to saying that the functional W itself is
invariant, i.e. W(f) = W(f{Λr}) for all Λr).

2. (Locality)
Wn(x1, . . . , xj , xj+1, . . . , xn) = Wn(x1, . . . , xj+1, xj , . . . , xn) (10)

if (xj − xj+1)
2 < 0.

3. (Positive Definiteness). For each f ∈ B, W(f⋆f) ≥ 0. Explicitly, given f0 ∈ C, f1 ∈ D(Xd), . . . ,
fk ∈ D(Xk

d ), then
k∑

n,m=0

〈Wn+m, f
⋆
n ⊗ fm〉 ≥ 0. (11)

As in the Minkowskian case [34, 5, 25], the GNS construction yields a Hilbert space H, a unitary

representation Λr 7→ U(Λr) of L
↑
+, a vacuum vector Ω ∈ H invariant under U , and an operator valued

distribution φ such that
Wn(x1, . . . , xn) = (Ω, φ(x1) . . . φ(xn)Ω). (12)

The GNS construction also provides the vector valued distributions Φ
(b)
n such that

〈Φ(b)
n , fn〉 =

∫
fn(x1, . . . , xn)φ(x1) . . . φ(xn)Ω dσ(x1) . . . dσ(xn) (13)

and a representation f → Φ(f) (by unbounded operators) of B of which the field φ is a special case:
φ(f1) =

∫
φ(x)f1(x)dσ(x) = Φ ((0, f1, 0, . . .)). For every open set O of Xd the corresponding polynomial
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algebra P(O) of the field φ is then defined as the subalgebra ofΦ(B) whose elementsΦ(f0, f1, . . . , fn, . . .)
are such that for all n ≥ 1 suppfn(x1, . . . , xn) ⊂ On. The set D = P(Xd)Ω is a dense subset of H and
one has (for all elements Φ(f),Φ(g) ∈ P(Xd)):

W(f⋆g) = (Φ(f)Ω, Φ(g)Ω). (14)

The properties 1-3 are literally carried over from the Minkowskian case, but no literal or unique
adaptation exists for the usual spectral property. In the (d+1)-dimensional Minkowskian case, the latter
is equivalent to the following: for each n ≥ 2, Wn is the boundary value in the sense of distributions of
a function holomorphic in the tube

Tn = {z = (z1, . . . , zn) ∈ Cn(d+1) : Im (zj+1 − zj) ∈ V+, 1 ≤ j ≤ n− 1}. (15)

In the case of the de Sitter space Xd (embedded in Rd+1), a natural substitute for this property is to
assume that Wn is the boundary value in the sense of distributions of a function holomorphic in

Tn = X
(c)n
d ∩ Tn. (16)

It will be shown below that Tn is a domain and a tuboid in the sense of [9], namely a domain which is
bordered by the reals in such a way that the notion of “distribution boundary value of a holomorphic
function from this domain” remains meaningful. It is thus possible to impose:

4. (Weak spectral condition). For each n > 1, the distribution Wn is the boundary value of a function

Wn holomorphic in the subdomain Tn of X
(c)n
d .

It may seem unnatural, in the absence of translational invariance, to postulate analyticity properties in
terms of the difference variables (zj − zk). Note however that a Lorentz invariant holomorphic function

on a subdomain of X
(c)n
d depends only on the invariants zj · zk. Among these the zj · zj are fixed and

equal to −R2. Such a function therefore depends only on the (zj − zk)
2. In the same way as in the

Minkowskian case, it may be useful to relax some of the hypotheses 1-3. One may also want to impose:

5. (Temperedness Condition). For each n > 1, there are constants M(n) ≥ 0 and L(n) ≥ 0 such that
the distribution Wn is the boundary value of a function Wn holomorphic in the subdomain Tn of

X
(c)n
d satisfying

|Wn(x+ iy)| ≤M(n)(1 + ‖x+ iy‖+ dist(z, ∂Tn)
−1)L(n). (17)

This global bound (which includes the behaviour of Wn at infinity) will not be indispensable in this
paper, but the local part of it (indicating a power behaviour near each point x for y tending to zero)
is in fact equivalent to the distribution character of the boundary value of Wn postulated in 4 (see our
remark 1 below).

For completeness, we now recall the definition of tuboids on manifolds (given in [9]). Let M be
a real n-dimensional analytic manifold, TM =

⋃
x∈M(x, TxM) the tangent bundle to M and M(c) a

complexification of M. If x0 is any point in M, Ux0
and U (c)

x0
will denote open neighborhoods of x0,

respectively in M and M(c) such that Ux0
= U (c)

x0 ∩M; a corresponding neighborhood of (x0, 0) with
basis Ux0

in TM will be denoted TlocUx0
.

Definition 1 We call admissible local diffeomorphism at a point x0 any diffeomorphism δ which maps

some neighborhood TlocUx0
of (x0, 0) in TM onto a corresponding neighborhood U (c)

x0 of x0 in M(c)

(considered as a 2n-dimensional C∞ manifold) in such a way that the following properties hold:

a) ∀x ∈ Ux0
, δ[(x, 0)] = x;

b) ∀(x, y) ∈ TlocUx0
, with y 6= 0, (y ∈ TxM), the differentiable function t → z(t) = δ[(x, ty)] is such

that
1

i

dz

dt
(t)|t=0 = αy, with α > 0. (18)
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A tuboid can now be described as a domain in M(c) which is bordered by the real manifold M and
whose “shape” near each point of M is (in the space of Im z and for Im z → 0) very close to a given cone
Λx of the tangent space TxM to M at the point x. The following more precise definitions are needed.

Definition 2 We call “profile” above M any open subset Λ of TM which is of the form Λ =
⋃

x∈M(x,Λx),
where each fiber Λx is a non-empty cone with apex at the origin in TxM (Λx can be the full tangent
space TxM).

It is convenient to introduce the “projective representation” ṪM of TM, namely ṪM =
⋃

x∈M(x, ṪxM),

with ṪxM = TxM \ {0}/R+. The image of each point y ∈ TxM in ṪxM is ẏ = {λy; λ > 0}. Each
profile Λ can then be represented by an open subset Λ̇ =

⋃
x∈M(x, Λ̇x) of ṪxM (each fiber Λ̇x = Λx/R

+

being now a relatively compact set). We also introduce the complement of the closure of Λ̇ in ṪM,

namely the open set Λ̇′ = ṪM\ Λ̇= ⋃x∈M(x, Λ̇′x) (note that Λ̇′x ⊂ ṪxM\ Λ̇x).

Definition 3 A domain Θ of Mc is called a tuboid with profile Λ above M if it satisfies the following
property. For every point x0 in M, there exists an admissible local diffeomorphism δ at x0 such that:

a) every point (x0, ẏ0) in Λ̇ admits a compact neighborhood K(x0, ẏ0) in Λ̇ such that
δ [{(x, y); (x, ẏ) ∈ K(x0, ẏ0), (x, y) ∈ TlocUx0

}] ⊂ Θ.

b) every point (x0, ẏ
′
0) in Λ̇′ admits a compact neighborhood K ′(x0, ẏ

′
0) in Λ̇′ such that

δ
[
{(x, y); (x, ẏ) ∈ K ′(x0, ẏ0), (x, y) ∈ TlocU ′x0

}
]
∩Θ = ∅

In a) and b), TlocUx0
and TlocU ′x0

denote sufficiently small neighbourhoods of (x0, 0) in TM which may
depend respectively on y0 and y′0, but always satisfy the conditions of Definition 1 with respect to δ.

Each fiber Λx of Λ will also be called the profile at x of the tuboid Θ.

Using these notions and the results in appendix A of [9], we will show the following

Proposition 1 i) The set

Tn = {z = (z1, . . . , zn); zk = xk + iyk ∈ X
(c)
d , 1 ≤ k ≤ n; yj+1 − yj ∈ V +, 1 ≤ j ≤ n− 1} (19)

is a domain of X
(c)n
d

ii) Tn is a tuboid above Xn
d , with profile

Λn =
⋃

x∈Xn
d

(x,Λn
x), (20)

where, for each x = (x1, . . . , xn) ∈ Xn
d , Λ

n
x is a non-empty open convex cone with apex at the origin in

TxX
n
d defined as follows:

Λn
x = {y = (y

1
, . . . , y

n
); y

k
∈ Tx

k
Xd, 1 ≤ k ≤ n; y

j+1
− y

j
∈ V +, 1 ≤ j ≤ n− 1}. (21)

Proof

a) Let Cn be the open convex cone in Rnd defined by

Cn = {y = (y
1
, . . . , y

n
); y

k
∈ Rd, 1 ≤ k ≤ n; y

j+1
− y

j
∈ V +, 1 ≤ j ≤ n− 1} (22)

The set Λn defined in Eqs. (20) and (21) can then be seen as the restriction of the open subset
Xn

d ×Cn of Xn
d ×Rnd to the algebraic set with equations xj .yj = 0, 1 ≤ j ≤ n, which represents

TXn
d as a submanifold of Xn

d × Rnd; Λn is therefore an open subset of TXn
d . Moreover, for
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every point x = (x1, . . . , xn) ∈ Xn
d , the set Λn

x defined in Eq. (21) is an open convex cone
in TxX

n
d ,as being the intersection of the latter with Cn. For every x, this cone is non-empty

since one can determine at least one vector y = (y
1
, . . . , y

n
) ∈ Λn

x as follows: y
1
being chosen

arbitrarily in Tx
1
Xd, we can always find y

2
∈
{
Tx

2
Xd

}
∩
{
y
1
+ V +

}
, and then by recursion

y
j+1

∈
{
Tx

j
Xd

}
∩
{
y
j
+ V +

}
, for j ≤ n− 1, because for every point xj ∈ Xd,

{
Tx

j
Xd

}
∩ V + is

a non-empty convex cone.

b) Let

Λn
R =

⋃

x∈Xn
d

(x,Λn
x,R), Λn

x,R = {y = (y
1
, . . . , y

n
) ∈ Λn

x , y
2
j
< R2, 1 ≤ j ≤ n}. (23)

Λn
R is (like Λn) an open subset of TXn

d ; each fiber Λn
x,R is a non-empty domain in TxX

n
d . This

results from the property of Λn
x proved in a), since the existence of a point in Λn

x,R or of an arc
connecting two arbitrary points inside Λn

x,R, follows from the corresponding property of Λn
x by

using the dilatation invariance of the latter. It follows that Λn
R is (like Λn) a connected set and

therefore a domain in TXn
d .

c) We now show that there exists a continuous mapping µ which is one-to-one from Λn
R onto the set

Tn \ Y n
R , where Y n

R denotes the following subset of codimension (d− 1) of X
(c)n
d :

Y n
R = {z = (z1, . . . , zn; zj = xj + iyj ∈ X

(c)
d , 1 ≤ j ≤ n; ∃ at least one j0 : xj0 = 0 }. (24)

Let us consider the following mapping µ:

µ(x, y) = z = (z1, . . . , zn), zj = xj + iyj =

√
R2 − y2

j

R
xj + iy

j
, 1 ≤ j ≤ n. (25)

µ is defined on the subset {TXn
d }R of all the elements (x, y) of TXn

d such that y2
j
< R2 for 1 ≤

j ≤ n; Eq. (25) implies that (for all j) z2j = −R2 and therefore that µ is a global diffeomorphism

from {TXn
d }R onto the subset Zn

R = X
(c)n
d \ Y n

R of X
(c)n
d ; clearly, this diffeomorphism maps Λn

R

onto Tn \ Y n
R , and therefore (in view of b)), Tn \ Y n

R is a domain of X
(c)n
d . Since all points of Tn

are either interior points or boundary points of Tn \Y n
R , and since Tn = X

(c)n
d ∩Tn is an open set,

it is a domain of X
(c)n
d .

d) In order to show that Tn is a tuboid with profile Λn above Xn
d , one just notices that the global

diffeomorphism µ provides admissible local diffeomorphisms (by local restrictions) at all points x
in Xn

d . Properties a) and b) of Definition 3 are then satisfied by Tn (with respect to all these local
diffeomorphisms) as an obvious by-product of Eq. (25).

Remark 1 By an application of theorem A.2. of [9], the weak spectral condition implies that for every
x there is some local tube Ωx + iΓx around x in any chosen system of local complex coordinates on

X
(c)n
d whose image in X

(c)n
d is contained in Tn has a profile very close to the profile of Tn (restricted to

a neighborhood of x), from which the boundary value equation Wn = b.v.Wn can be understood in the
usual sense. It implies equivalently that, in a complex neighborhood of each point x = (x1, . . . , xn) ∈ Xn

d ,
the analytic function Wn(z1, . . . , zn) is of moderate growth (i.e. bounded by a power of ‖y‖−1, where
‖y‖ denotes any local norm of y = Im z = (y1, . . . , yn)) when the point z = (z1, . . . , zn) tends to the
reals inside Tn.

Remark 2 An important difference with respect to the Minkowski case is that the reals (i.e. Xn
d ) are

not a distinguished boundary for the tuboid Tn.

8



3 Consequences of locality, weak spectral condition and de Sit-

ter covariance.

Most of the well-known properties of the Wightman distributions in the Minkowskian case ([32, 25])
hold without change in the de Sitterian case under our assumptions, and their proofs mostly carry
over literally. A few points, however require some attention. For each permutation π of (1, . . . , n), the
permuted Wightman distribution

W(π)
n (x1, . . . , xn) = Wn(xπ(1), . . . , xπ(n)) (26)

is the boundary value of a function W
(π)
n (z1, . . . , zn) holomorphic in the ”permuted tuboid”

T π
n = {z = (z1, . . . , zn); zk = xk + iyk ∈ X

(c)
d , 1 ≤ k ≤ n; yπ(j+1) − yπ(j) ∈ V +, 1 ≤ j ≤ n− 1} (27)

If two permutations π and σ differ only by the exchange of the indices j and k, then Wπ and Wσ coincide
in

Rjk = Xn
d ∩ Rjk, Rjk = {x ∈ Rn(d+1) : (xj − xk)

2 < 0}. (28)

Let R be a non-empty region which is the intersection of a subset of {Rjk : j 6= k}. By the edge-
of-the-wedge theorem (in its version for tuboids, see theorem A3 of [9]), any maximal set of permuted
Wightman distributions which coincide on this region are the boundary value, in R, of a common
function holomorphic in a tuboid above R whose profile is obtained by taking at each point x ∈ R the
convex hull of the profiles at x of the corresponding permuted tuboids. In particular all the permuted
Wightman distributions coincide in the intersection Ωn of all the Rjk, and it follows that they all are
boundary values of a common function Wn(z1, . . . zn), holomorphic in a primitive analyticity domain

Dn. Wn is the common analytic continuation of all the holomorphic functions W
(π)
n and the domain

Dn is the union of all the permuted tuboids T π
n and of the above mentioned local tuboids associated (by

the edge-of-the-wedge theorem) with finite intersections of the Rjk. In particular Dn contains a complex
neighborhood of Ωn since the tuboids T π

n and T πinv
n are opposite (where πinv = (π(n), . . . , π(1))). For

each permutation π we denote T π ext
n the extended permuted tuboid

T πext
n =

⋃

Λc∈L+(C)

ΛcT π
n =

⋃

Λc∈L+(C)

Λc(T
π
n ∩X(c)n

d ) = X
(c)n
d ∩

⋃

Λc∈L+(C)

ΛcT
π
n = X

(c)n
d ∩ Tπext

n . (29)

3.1 The Jost points and the Glaser-Streater theorem

The set of real points of Text
n = T1 ext

n (Jost points in the ambient space) is denoted Jn. Its intersection
Jn with Xn

d will be called the set of Jost points associated with the tuboid Tn. The set Jn is generated

(like Jn) by the action of the connected group L↑+ on a special subset of Jost points associated with a
given maximal space-like cone such as the “right-wedge” W(r) of the ambient space:

W(r) = −W(l) = {x ∈ Rd+1 : u(x) > 0, v(x) < 0}, (30)

the notations u,v being those of Eq. (2). The corresponding special Jost subset Jn
(r) is defined by

Jn
(r) = J(r)n ∩Xn

d , (31)

with

J(r)n = {(x1, . . . , xn) ∈ Rn(d+1) : x1 ∈W(r), (x2 − x1) ∈ W(r), . . . , (xn − xn−1) ∈ W(r)}. (32)

The fact that Jn is a non-empty and, if d > 2, connected set is then a consequence of the connectedness of

J (r)
n . The latter property can be checked as follows. The projection [J (r)

n ]u,v of J (r)
n onto the space R2n

of the (u, v)-coordinates is the intersection of the convex cone (u1 > 0, v1 < 0, uj+1−uj > 0, vj+1−vj <

9



0, 1 ≤ j ≤ n−1) (here we have put uj = u(xj), vj = v(xj)) with the set (u1v1 > −R2, . . . , unvn > −R2)

which is preserved by the contractions; therefore, any couple of points in [J (r)
n ]u,v can be connected by

a broken line contained in this set. Considering now J (r)
n as a fiberspace over its projection [J (r)

n ]u,v,

we see that it is locally trivialized with a toroidal fiber of the form ~x2j = constant, 1 ≤ j ≤ n which is

connected provided d is larger than 2; the connectedness of J (r)
n follows correspondingly.

As in the Minkowskian case, one can then state a de Sitterian version of the Glaser-Streater property,
according to which any function holomorphic in Tn∪−Tn∪Jn has a single-valued analytic continuation
in T ext

n = T 1 ext
n . (see e.g. [7, 25, 31]). Hence every permuted Wightman distribution is the boundary

value of a function holomorphic in the corresponding extended permuted tuboid T π ext
n ; this function is

in fact an analytic continuation of W
(π)
n and thereby of the common holomorphic n-point function Wn.

Remark. The proof of the Glaser-Streater property is based on a lemma of analytic completion in the
orbits of the complex Lorentz group and this is why it holds for the complexified de Sitter space (since

X
(c)n
d is a union of such orbits), the connectedness of the set of orbits generated by the Jost points

being of course crucial. To be complete, one must also point out that it requires the following strong
form of the Bargmann-Hall-Wightman lemma, ([23], pp. 95-97, [32] pp. 67-70) proved for d+ 1 ≤ 4 in
these references, and extended to all dimensions in [24]. An alternative proof of the latter is given in
Appendix B.

Lemma 1 (Bargmann-Hall-Wightman-Jost) Let M ∈ L+(C) be such that T+ ∩M−1T+ 6= ∅. There
exists a continuous map t 7→ M(t) of [0, 1] into L+(C) such that M(0) = 1, M(1) = M , and that, for
every z ∈ T+ ∩M−1T+ and t ∈ [0, 1], M(t)z ∈ T+.

3.2 The PCT-property

The standard proof of the PCT theorem (see [25, 32] and references therein) extends in a straightforward
way to the de Sitterian case under the assumptions of covariance, weak spectral condition, and locality.
The latter can be relaxed to the condition of weak locality [13, 25, 32], namely:
Weak locality condition: For every Jost point (r1, . . . , rn) ∈ Jn,

Wn(r1, . . . , rn) = Wn(rn, . . . , r1) (33)

which obviously follows from locality.

Proposition 2 (PCT invariance) From the weak spectral condition, the covariance condition, and the
weak locality condition, it follows that

Wn(x1, . . . , xn) = Wn(I0xn, . . . , I0x1) (34)

holds at every real x ∈ Xn
d (in the sense of distributions), where I0 = −1 if d is odd, and, if d is even,

for every z ∈ Cd+1,
(I0 z)

(µ) = −z(µ) for 0 ≤ µ < d, (I0 z)
(d) = z(d). (35)

If moreover the positivity condition holds, there exists an antiunitary operator Θ : H → H such that

ΘΩ = Ω, Θ〈Φ(b)
n , f〉 = 〈Φ(b)

n , f⋆
I0〉, (36)

where f⋆
I0
(x1, . . . , xn) = f̄(I0xn, . . . , I0x1).
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One notices that, in this statement, it is the symmetry I0 (which depends on the parity of the
dimension) which has to be used (as it is also the case for d + 1-dimensional Minkowskian theories).
This is due to the fact that I0 always belongs to the corresponding complex connected group L+(C)
under which the functions Wn are invariant. Since the mapping (z1, . . . , zn) → (I0zn, . . . , I0z1) is
always (for every n) an automorphism of the tuboid Tn, the standard analytic continuation argument
[25, 32] applies to the proof of Eq. (34). Now, it is interesting to note that for d even (in particular
in the “physical case” d = 4) I0 does have the interpretation of a space-time inversion in a local region
of the de Sitter universe around the base point x0 with coordinates (0, . . . , 0, R), considered as playing
the role of the origin in Minkowski space. In fact, the stabilizer of x0 (inside the de Sitter group) is
the analogue of the Lorentz group (inside the Poincaré group) and indeed it acts as the latter in the
(Minkowskian) tangent space to Xd at x0; I0 then appears as the corresponding space-time inversion
(contained in the complexified stabilizer of x0 ). This means that (for d even) the previous proposition
can be seen as introducing a PCT-symmetry relative to the point x0; analogous symmetry operators
could be associated with all points of the de Sitter manifold.

3.3 Euclidean points

In the ambient complex n-point Minkowskian space-time Cn(d+1), the union of the permuted extended
tubes

⋃
π T

πext
n contains all non-coinciding Euclidean points. Since the intersection of this union with

X
(c)n
d is the union of all permuted extended tuboids T πext

n , it follows that the domain of analyticity of
Wn contains the set of all non-coinciding points of the product of n Euclidean spheres.

3.4 The case n = 2. Generalized free fields and their Wick powers

The extended tube Text
2 is equal to {(z1, z2) ∈ C2(d+1) : (z1 − z2)

2 /∈ R+}. Hence

T ext
2 = {(z1, z2) ∈ X

(c)2
d : (z1 − z2)

2 /∈ R+}. (37)

In particular W2(z1, z2)−W2(z2, z1) is analytic, odd, and Lorentz invariant at real space-like separa-
tions, hence vanishes there even without the locality assumption. Thus under the assumptions of weak
spectral condition and covariance, W2(z1, z2) defines an “invariant perikernel” in the sense of [10] which
can be represented by a function w(ζ) of the single complex variable ζ = 1+(z1−z2)2/2R2 = −z1 ·z2/R2,
holomorphic in the cut-plane C \ [1, ∞). Any such two-point function completely determines a gener-
alized free field A whose Wightman functions are obtained by the same formulae as in the Minkowskian
case. (see [9] for a detailed study of all that). A can also be seen as the restriction of a generalized free
field on the ambient Minkowski space, in general with an indefinite metric (see also in this connection
subsection 5.4 of [9]). Wick monomials in A have well-defined Wightman functions, again given by the
same formulae as in the Minkowskian case, i.e. as sums of products of two-point functions. Since these
Wightman functions can be obtained as limits of Wightman functions of Wick monomials of group-
regularizations of A, they satisfy all the conditions 1-5 (in particular positivity) provided A does. In
particular the Wick monomials in A are unbounded distribution valued operators in the Fock space of
A, and provide examples of theories satisfying all the axioms.

4 Physical interpretation of the weak spectral condition

In this section, we are still in the Lorentz coordinate frame {e0, . . . , ed} in the ambient real Minkowski
space, the notations u, v, [λ] are as in Eqs. (2) and (3).

Let us now discuss the physical interpretation of the spectral condition we have introduced. Following
the pioneering approach of Unruh [33], Gibbons and Hawking [16] we adopt the viewpoint of a geodesical
observer and namely the one moving on the geodesic h(x0) of the base point x0 contained in the
(x(0), x(d))-plane, which we parametrize as follows:

h(x0) = {x = x(τ); x(0) = R sinh
τ

R
, x(1) = · · · = x(d−1) = 0, x(d) = R cosh

τ

R
} (38)
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The parameter τ of the representation (38) is the proper time of the observer and the base point x0 is
the event for which τ = 0 .

The set of all events of Xd which can be connected with the observer by the reception and the
emission of light-signals is the region:

Uh(x0) = {x ∈ Xd : x(d) > |x(0)|} =W(r) ∩Xd. (39)

Points in Uh(x0) can be parametrized by (τ,~x) as follows:

x(τ,~x) =



x(0) =

√
R2 − ~x2 sinh τ

R

(x(1), . . . , x(d−1)) = ~x

x(d) =

√
R2 − ~x2 cosh τ

R

, τ ∈ R, ~x2 < R2 (40)

Uh(x0) is the intersection of the hyperboloid with the wedge W(r) of the ambient space and admits two

boundary parts H+
h(x0)

and H−h(x0)
, respectively called the “future” and “past horizons” of the geodesical

observer:
H±h(x0)

= {x ∈ Xd : x(0) = ±x(d), x(d) ≥ 0}. (41)

Uh(x0) is stable under the transformation (3), for λ = e
t
R > 0. These transformations constitute a

subgroup Th(x0) of L
↑
+. The action of Th(x0)(t) on Uh(x0) written in terms of the parameters t and τ can

be interpreted as a “time-translation”:

Th(x0)(t)[x(τ,~x)] = x(t + τ,~x) ≡ xt. (42)

Th(x0) thus defines a group of isometric automorphisms of Uh(x0) whose orbits are all branches of hyper-

bolae of Uh(x0) in two-dimensional plane sections parallel to the (x(0), x(d))-plane (see [26] for a general
discussion of this kind of structure).

Before discussing the physical interpretation of the spectral condition, we need to extend to the
de Sitter case one aspect of a well-known result of Bisognano and Wichmann [BW] which concerns

analyticity properties in orbits of the complexified group T
(c)
h(x0)

of Th(x0).

4.1 Bisognano-Wichmann analyticity.

For every function gn in D(Xn
d ) or S(Xn

d ) and every λ ∈ R \ {0}, [λ] as in Eq. (3), we denote (with a
simplified form of (8))

gnλ(x1, . . . , xn) = gn([λ
−1]x1, . . . , [λ

−1]xn). (43)

and
g←n (x1, . . . , xn) = gn(xn, . . . , x1) (44)

Then one has:

Theorem 1 If a set of Wightman distributions satisfies the locality and weak spectral conditions, then
for all m, n ∈ N, fm ∈ D(Wm

(r) ∩ Xm
d ) and gn ∈ D(Wn

(r) ∩ Xn
d ), there is a function G(fm,gn)(λ)

holomorphic on C\R+ with continuous boundary values G±(fm,gn)
on (0, +∞) from the upper and lower

half-planes such that:
a) for all λ ∈ (0, +∞),

G+
(fm,gn)

(λ) = 〈Wm+n, fm ⊗ gnλ〉, G−(fm,gn)
(λ) = 〈Wm+n, gnλ ⊗ fm〉. (45)

b) for all λ ∈ (−∞, 0),

G(fm,gn)(λ) = 〈Wm+n, fm ⊗ g←n λ〉 = 〈Wm+n, g
←
n λ ⊗ fm〉. (46)
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This theorem neither requires positivity nor Lorentz covariance. It expresses a property of the
domain of holomorphy of the Wightman functions, and of the boundary values from this domain. In
fact, it states that appropriate boundary values of the (m + n)−point holomorphic function Wm+n,
taken in the region where all the variables w1, . . . , wm, z1, . . . , zn belong toW(r)∩Xd, are holomorphic

with respect to the group variable λ (for λ ∈ C \R+) in the orbits (w, x) 7→ (w, [λ]x) of T
(c)
h(x0)

(with

w = (w1, . . . , wm), x = (x1, . . . , xn), λ = e
t
R ) and such that:

for λ > 0,

Wm+n(w, [λ+ i0]x) = Wm+n(w, [λ]x), Wm+n(w, [λ− i0]x) = Wm+n([λ]x, w) (47)

and for λ < 0, putting x← = (xn, . . . , x1),

Wm+n(w, [λ]x) = Wm+n(w, [λ]x←) = Wm+n([λ]x←, w) (48)

the latter equality being a direct consequence of locality (since x ∈Wn
(r) and λ < 0 imply [λ]x← ∈ Wn

(l)).
The theorem will be proved here under the simplifying assumption that the temperedness condition

(17) holds.

Proof
Four permuted branches of the functionWm+n are involved in the proof. The variablesw = (w1, . . . , wm)

will always be kept real in Wm
(r) ∩Xm

d , while the variables z = (z1, . . . , zn) are complex (in X
(c)n
d ) and

we denote y = Im z. The corresponding analyticity domains in the variables z (described below) are
obtained in the boundaries (i.e. in the “face” Imw = 0) of four permuted tuboids T π

m+n according to
the prescription of our weak spectral condition. In view of the distribution boundary value procedure,
restricted to the subset of variables w, these analyticity domains are obtained whenever one smears out
the permuted functions Wπ

m+n under consideration with a fixed function fm ∈ D(Wm
(r) ∩ Xm

d ). (this

function being understood as the function named fm in the statement of the theorem). These four
branches are:

i) Wm+n(w1, . . . , wm, z1, . . . , zn) = Wm+n(w, z), holomorphic in the tuboid:

Zn+ =
{
z ∈ X

(c)n
d ; y1 ∈ V+, yj − yj−1 ∈ V+, j = 2, . . . , n

}
;

ii) Wm+n(zn, . . . , z1, w1, . . . , wm) = Wm+n(z←, w), holomorphic in the opposite tuboid:

Zn− = {z ∈ X
(c)n
d ; y1 ∈ V−, yj − yj−1 ∈ V−, j = 2, . . . , n};

iii) Wm+n(z1, . . . , zn, w1, . . . , wm) = Wm+n(z, w), holomorphic in the tuboid:

Z ′n+ = {z ∈ X
(c)n
d ; yn ∈ V−, yj − yj−1 ∈ V+, j = 2, . . . , n};

iv) Wm+n(w1, . . . , wm, zn, . . . , z1) = Wm+n(w, z←), holomorphic in the opposite tuboid:

Z ′n− = {z ∈ X
(c)n
d ; yn ∈ V+, yj − yj−1 ∈ V−, j = 2 . . . , n}.

Correspondingly, with the fixed function fm ∈ D(Wm
(r)∩Xm

d ) we associate the following four functions

z 7→ F±(fm; z) and z 7→ F ′±(fm; z):

F+(fm; z) =

∫

Xm
d

Wm+n(w, z) fm(w) dmσ(w), F−(fm; z) =

∫

Xm
d

Wm+n(z←, w) fm(w) dmσ(w)

(49)

F ′+(fm; z) =

∫

Xm
d

Wm+n(z, w) fm(w) dmσ(w), F ′−(fm; z) =

∫

Xm
d

Wm+n(w, z←) fm(w) dmσ(w)

(50)
which are respectively holomorphic in Zn+, Zn−, Z ′n+ and Z ′n−. By letting the variables z tend
to the reals from the respective tuboids Zn+, Zn−, Z ′n+ and Z ′n−, and taking the corresponding
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boundary values F
(b)
± (fm; x) and F ′

(b)
± (fm; x) of F± and F ′± on Xn

d in the sense of distributions, one
then obtains for every gn ∈ D(Xn

d ) the following relations which involve the (m+ n)−point Wightman
distributions considered in the statement of the theorem:

∫

Xn
d

F
(b)
+ (fm; x) gn(x) d

nσ(x) = 〈Wm+n, fm ⊗ gn〉, (51)

∫

Xn
d

F
(b)
− (fm; x) gn(x) d

nσ(x) = 〈Wm+n, g
←
n ⊗ fm〉. (52)

∫

Xn
d

F ′
(b)
+ (fm; x) gn(x) d

nσ(x) = 〈Wm+n, gn ⊗ fm〉. (53)

∫

Xn
d

F ′
(b)
− (fm; x) gn(x) d

nσ(x) = 〈Wm+n, fm ⊗ g←n 〉. (54)

We now notice that, in view of local commutativity, F
(b)
+ (fm; x) and F

(b)
− (fm; x) coincide in the

sense of distributions on the set of special Jost points J (l)
n = −J (r)

n = {(x1, . . . , xn) ∈ Xn
d ; 0 >

u1 > . . . un−1 > un, 0 < v1 < . . . vn−1 < vn}; therefore, in view of the edge-of-the-wedge theorem,
the functions z 7→ F+(fm; z) and z 7→ F−(fm; z) have a common holomorphic extension, denoted

F (fm; z), in ∆ = Zn+ ∪ Zn− ∪ V , where V is a complex neighborhood of J (l)
n , such that [λ]V = V

for all λ > 0 (in particular F
(b)
+ (fm; x) and F

(b)
− (fm; x) are continuous on J (l)

n ). By a similar use

of local commutativity for F ′
(b)
+ and F ′

(b)
− , which coincide on the set of special Jost points J ′(l)n =

{(x1, . . . , xn) ∈ Xn
d ; 0 > un > un−1 . . . > u1, 0 < vn < vn−1 . . . < v1}, we also notice that the

functions z 7→ F ′+(fm; z) and z 7→ F ′−(fm; z) have a common holomorphic extension, denoted

F ′(fm; z), in ∆′ = Z ′n+∪Z ′n−∪V ′, where V ′ is a complex neighborhood of J ′(l)n , such that [λ]V ′ = V ′
for all λ > 0. Moreover, if the temperedness condition (17) is satisfied by the function Wm+n, it can
be checked that similar inequalities are satisfied by the holomorphic functions F (fm; z) and F ′(fm; z)
with respect to the variables z in their respective tuboids Zn± and Z ′n±.

At this point, we shall rely on the following basic lemma which provides analytic completion in the
orbits of the group {z 7→ [λ]z} (for λ ∈ C±) and whose proof is given below (after the end of our
argument).

Lemma 2 a) Given any function H(z) holomorphic in ∆, the function (z, λ) 7→ H([λ]z) is holo-
morphic in Zn+ ×C+. Moreover, if H(x + iy) satisfies majorizations of the form (17) in the tuboids

Zn+ and Zn− allowing one to define the boundary values H
(b)
+ and H

(b)
− of H from Zn+ and Zn−

as tempered distributions, then the function (z, λ) 7→ H([λ]z) admits a distribution boundary value on
Xn

d ×C+ (still denoted H([λ]x)); the latter is a distribution in x with values in the functions of λ which
are holomorphic in C+ and continuous in C+ \ {0} and one has:

H([±λ]x) = H
(b)
± ([±λ]x) for λ > 0 (55)

(the latter being identities between distributions in x with values in the continuous functions of λ).
b) Similarly, given any function H ′(z) holomorphic in ∆′, the function (z, λ) 7→ H ′([λ]z) is holo-

morphic in Z ′+×C−. Moreover, if H ′(x+ iy) satisfies majorizations of the form (17) in the tuboids Z ′+
and Z ′− allowing one to define the boundary values H ′

(b)
+ and H ′

(b)
− of H ′ from Z ′+ and Z ′− as tempered

distributions, then the function (z, λ) 7→ H ′([λ]z) admits a distribution boundary value on Xn
d × C−,

holomorphic in C− and continuous in C− \ {0}, and one has:

H ′([±λ]x) = H ′
(b)
± ([±λ]x) for λ > 0. (56)
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Since the function F (fm; z) satisfies the analyticity and temperedness properties of the function
H(z) of Lemma 2 a), it follows that one can take the boundary value onto Xn

d ×C+ from Zn+ ×C+ of
the holomorphic function (z, λ) 7→ F (fm; [λ]z) and obtain for every gn ∈ D(Xn

d ) the following relations
(deduced from Eq. (55) after taking into account Eqs. (51) and (52)):

∫

Xn
d

F (fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, fm ⊗ gnλ〉 for λ > 0, (57)

∫

Xn
d

F (fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, g

←
n λ ⊗ fm〉 for λ < 0. (58)

Similarly, one can apply the results of Lemma 2 b) to the function H ′(z) = F ′(fm; z); one can
thus take the boundary value onto Xn

d ×C− from Z ′n+ × C− of the holomorphic function (z, λ) 7→
F ′(fm; [λ]z) and obtain for every gn ∈ D(Xn

d ) the following relations (deduced from Eq. (56) after
taking into account Eqs. (53) and (54)):

∫

Xn
d

F ′(fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, gnλ ⊗ fm〉 for λ > 0, (59)

∫

Xn
d

F ′(fm; [λ]x)gn(x)d
nσ(x) = 〈Wm+n, fm ⊗ g←n λ〉 for λ < 0. (60)

The l.h.s. of Eqs. (57) (or (58)) and (59) (or (60)) are respectively the boundary values of the
holomorphic functions

G(fm,gn)(λ) =

∫

Xn
d

F (fm; [λ]x)gn(x)d
nσ(x) (61)

defined for λ ∈ C+ and

G′(fm,gn)
(λ) =

∫

Xn
d

F ′(fm; [λ]x)gn(x)d
nσ(x) (62)

defined for λ ∈ C−. For an arbitrary function gn ∈ D(Xn
d ), these two holomorphic functions are distinct

from each other. Now, if gn is taken in D(Un
h(x0)

), the r.h.s. of Eqs. (58) and (60) coincide in view
of local commutativity, and therefore these two holomorphic functions admit a common holomorphic
extension G(fm,gn)(λ) in C \R+ whose boundary values on R \ 0 satisfy the properties a) and b) of the
theorem. (in view of Eqs. (57)—(60)).

Proof of Lemma 2
We concentrate on part a) of the lemma, part b) being completely similar. At first, the fact that the
function (z, λ) 7→ H([λ]z) can be analytically continued in Zn+ ×C+ is a result of purely geometrical
nature (based on the tube theorem) which can be obtained as a direct application of lemma 3 (ii) of

Appendix A. In fact, for each point x ∈ J (r)
n , the set {z = [λ]x; λ ∈ C+} is contained in ∆ (namely

in Zn+, as it directly follows from Eq. (3) and from the definitions of J (r)
n and Zn+). One can even

check that each point x ∈ J (r)
n is on the edge of a small open tuboid τ(x) contained in Zn+ such that

{z = [λ]z′; z′ ∈ τ(x), λ ∈ C+} ⊂ Zn+ ∪ V ⊂ ∆. On the other hand, for each point z ∈ Zn+ there
exists a neighbourhood δ+(z) of the real positive axis and a neighbourhood δ−(z) of the real negative
axis in the complex λ-plane, such that the set {[λ]z; λ ∈ δ+(z)∪δ−(z)} is contained in ∆: for λ ∈ δ+(z)
and λ ∈ δ−(z) the corresponding subsets are respectively contained in Zn+ and in Zn−. Therefore, the
assumptions of lemma 3 (ii) of Appendix A are fulfilled (by choosing the set Q of the latter as a subset
of τ(x) and D′ = Zn+ after an appropriate adaptation of the variables). In order to see that the new
domain thus obtained (i.e. {z = [λ]z′; z′ ∈ Zn+, λ ∈ C+} yields an enlargement of ∆, it is sufficient
to notice that every real point x such that at least one component xj − xj−1 is time-like is transformed
by any complex transformation [λ] into a point outside Zn± and this is of course also true for all points
z ∈ Zn+ tending to such real (boundary) points (the neighbourhoods δ±(z) becoming arbitrarily thin
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in such limiting configurations). The second statement of the lemma precisely deals with these limiting
real configurations and with the fact that the analyticity of the boundary value H([λ]x) in {λ ∈ C+}
is maintained for all x ∈ Xn

d . The boundary value relations (55) then follow from the fact that every
point x is a limit of points z ∈ Zn+ and that the latter are always such that [λ]z ∈ Zn+ for λ > 0 and
[λ]z ∈ Zn− for λ < 0. In order to avoid too subtle an argument for justifying the analyticity of the limit
H([λ]x) in {λ ∈ C+}, we prefer to rely on an assumption of tempered growth (of the form (17)) for H ;
the latter allows one to give an alternative version of the analytic completion procedure which is based
on the Cauchy integral representation, and thereby includes the treatment of the boundary values.

For z = (z1, . . . , zn) ∈ Cnd, we adopt the coordinates

ζ1 = z1, ζk = zk − zk−1 for 1 < k ≤ n, uj = ζ
(0)
j + ζ

(d)
j , vj = ζ

(0)
j − ζ

(d)
j , for 1 ≤ j ≤ n, (63)

rj = (ζ
(1)
j , . . . , ζ

(d−1)
j ). (64)

For every z = (z1, . . . , zn) ∈ Zn+, we define G(z, λ) = H([λ]z). Easy computations using the
tempered growth condition show that G(z, λ) is a holomorphic function of z and λ = ρeiθ for z ∈ Zn+,
ρ ∈ (0, +∞) and

| sin θ| < κ

2(1 + 2M)
, κ = min

j

(
1− ‖Im rj‖2

Imuj Imvj

)
, (65)

with

M =
1

µ
max

j
max{|Reuj |, |Re vj |}, µ = min

j
min{Imuj , Imvj}, (66)

which (for such values) satisfies bounds of the following form:

|G(z, λ)| ≤ K1(|λ|+ 1/|λ|)L
(

1

µκ
+max

j
|ζj |
)L

≤ K2(|λ|+ 1/|λ|)L
(
dist(z, ∂Tn)

−1 +max
j

|ζj |
)L

,

(67)
where K1, K2 are suitable constants.

On the other hand if z is real and z ∈ J (r)
n , i.e. uj > 0 and vj < 0 for all j (with the notations of

Eq. (63)), then [λ]z ∈ Zn+ whenever Imλ > 0 and

|H([λ]z)| ≤ K(|λ|+ 1/|λ|)L
(

1

Imλ
max

j
(1/Reuj − 1/Revj) + max

j
|ζj |
)L

. (68)

This shows that H([λ + i0]z) is a tempered distribution in λ ∈ R with values in the polynomially

bounded functions of z on J (r)
n (actually in the C∞ functions of z, as the z derivatives of H and G

satisfy similar bounds). When λ < 0, as already noted, one has [λ]z ∈ V and G(z, λ) = H([λ]z) is

analytic in z and λ. Hence, for z ∈ J (r)
n , G(z, λ + i0) is well-defined as a tempered distribution in

λ ∈ R with values in the polynomially bounded functions of z on J (r)
n and is the boundary value of a

function holomorphic in C+ and bounded by the r.h.s. of Eq. (68). For λ ∈ C+ this function can be
computed by the Cauchy formula:

G(z, λ) =
1

2πi
(i+ λ− 1/λ)2L+2

∫

R

G(z, λ′ + i0)

(i + λ′ − 1/λ′)2L+2(λ′ − λ)
dλ′. (69)

As shown by Eq. (67), the r.h.s. of this formula continues to make sense for z ∈ Zn+ and defines a
function of z holomorphic and of tempered growth in Zn+, with values in the functions of λ holomorphic
in C+ and continuous on C+ \ {0}. Therefore it has a boundary value in the sense of distributions as
z tends to the reals. For real λ 6= 0, this boundary value coincides with G(z, λ) (in the sense of

distributions) when z ∈ J (r)
n , hence (in view of the analytic continuation principle extended by the

edge-of-the-wedge theorem) the rhs of Eq. (69) coincides with G(z, λ) for all z ∈ Zn+ and all real
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λ 6= 0. The formula (69) thus holds for all z ∈ Zn+, λ ∈ C+ and, in the sense of distributions, when z
tends to the reals; moreover, the relations (55) hold in this limit as explained above in the geometrical
analysis.

The previous argument could be identically repeated for part b) of the lemma, replacing Zn± by

Z ′n± etc... and C+ by C−, since (as one can check directly) for each point x ∈ J ′(r)n = −J ′(l)n , the set
{z = [λ]x; λ ∈ C−} is contained in Z ′n+.

Remark. Using the vector-valued analyticity provided by Lemma 4 below, it is possible to carry over
the analysis of Bisognano and Wichmann without change to the de Sitterian case. The above proof
(also valid in the Minkowskian case) aims at a clear distinction of the part of this theory which does
not depend on positivity.

4.2 Physical interpretation

The following theorem gives a thermal physical interpretation to the weak spectral condition we have
introduced.

Theorem 2 (KMS condition)
For every pair of bounded regions O1, O2 of Uh(x0), the correlation functions between elements of the
corresponding polynomial algebras P(O1), P(O2) of a field on Xd satisfying the previous postulates enjoy
a KMS condition with respect to the time-translation group Th(x0) whose temperature is T = 1/2πR.

Proof.
Being given any general correlation function (Ω,Φ(f)Φ(g)Ω) between arbitrary elements Φ(f) ∈ P(O1)
and Φ(g) ∈ P(O2), with f = (f0, f1, . . . , fm, . . .), g = (g0, g1, . . . , gn, . . .), (fm ∈ D(Om

1 ), gn ∈ D(On
2 )),

we consider, for each “time-translation” Th(x0)(t), the transformed quantities

W(f,g)(t) = (Ω,Φ(f)Φ(g{et/R})Ω) (70)

and
W ′(f,g)(t) = (Ω,Φ(g{et/R})Φ(f)Ω) (71)

(the notation g{et/R} being as in Eq. (8), with Λr = [λ], λ = e
t
R ).

In view of Theorem 1, one can introduce the function G(f,g)(λ) =
∑

m,nG(fm,gn)(λ), which is

holomorphic for λ = e
t
R ∈ C \R+ and admits continuous boundary values G±(f,g) on (0, +∞) from the

upper and lower half-planes given respectively (in view of Eqs. (45) and (14)) by:

G+
(f,g)(λ) =

∑

m,n

〈Wm+n, fm ⊗ gnλ〉 = (Ω,Φ(f)Φ(g{et/R})Ω), (72)

G−(f,g)(λ) =
∑

m,n

〈Wm+n, gnλ ⊗ fm〉 = (Ω,Φ(g{et/R})Φ(f)Ω). (73)

This readily implies that the function W(f,g)(t) = G(f,g)(e
t
R ) is holomorphic in the strip 0 < Im t < 2πR

and that it admits continuous boundary values on the edges of this strip which are:

lim
ǫ→0+

W(f,g)(t+ iǫ) = W(f,g)(t), lim
ǫ→0+

W(f,g)(t+ 2iπR− iǫ) = W ′(f,g)(t). (74)

The latter express the fact that all the field observables localized in Uh(x0) and submitted to the time-
translation group Th(x0) satisfy a KMS-condition at temperature T = (2πR)−1.

The previous property must be completed by the following results:

17



i) Periodicity in the complex time variable
Since f and g are localized respectively in O1 and O2, it follows from local commutativity that the
function W(f,g)(t) can be analytically continued across the part of the line Im t = 0 (and therefore
Im t = 2nπR, n ∈ Z) on which the two matrix elements of Eqs. (70) and (71) are equal. One concludes
that the function W(f,g)(t) is holomorphic and periodic with period 2iπR in the following cut-plane
Ccut(O1,O2) which is connected (in particular) if O1 and O2 are space-like separated:

Ccut(O1,O2) =
⋂

x1∈O1,x2∈O2

Ccut
x1,x2

, (75)

where
Ccut

x1,x2
= {t ∈ C; Im t 6= 2nπR, n ∈ Z} ∪ {t; t− 2inπR ∈ Ix1,x2

, n ∈ Z}. (76)

and for any pair (x1, x2) we have set

Ix1,x2
= {t ∈ R : (x1 − [e−

t
R ]x2)

2 < 0} (77)

ii) The antipodal condition
The following property, relating by analytic continuation the field observables localized in the region

Uh(x0) with those localized in the antipodal region

Ǔh(x0) = {x ∈ Xd,−x ∈ Uh(x0)} = {x = (x(0), ~x, x(d)) ∈ Xd, x̌ = (−x(0), ~x,−x(d)) ∈ Uh(x0)} (78)

can also be obtained as a by-product of theorem 1.

With each sequence g = (g0, g1, . . . , gn, . . .) such that gn ∈ D(Un
h(x0)

) let us associate the sequence

ǧ = (ǧ0, ǧ1, . . . , ǧn, . . .), where ǧn(x1, . . . , xn) = g←n (x̌1, . . . , x̌n) = gn(x̌n, . . . , x̌1). Since (for each n) one
has ǧn ∈ D(Ǔn

h(x0)
), it follows that Φ(ǧ) belongs to P(Ǔh(x0)).

Let us also note that for the Lorentz transformation [λ] = [−1], one has g←n −1 = ǧn and therefore,
for all λ > 0, g←n −λ = ǧnλ.

We then see that the holomorphic function G(f,g)(λ) introduced above satisfies (in view of Eq. (46))
the following relations:

for all λ > 0,

G(f,g)(−λ) =
∑

m,n

〈Wm+n, fm ⊗ g←n −λ〉 =
∑

m,n

〈Wm+n, g
←
n −λ ⊗ fm〉. (79)

and therefore in view of Eq. (14):

G(f,g)(−et/R) = (Ω,Φ(f)Φ(ǧ{et/R})Ω). = (Ω,Φ(ǧ{et/R})Φ(f)Ω). (80)

We can then state the following

Proposition 3 (antipodal condition)
Being given arbitrary observables Φ(f) and Φ(g) in P(Uh(x0)) and the corresponding observable Φ(ǧ)

in P(Ǔh(x0)), the following identities hold:
∀ t ∈ R,

W(f,g)(t+ iπR) = (Ω,Φ(f)Φ(ǧ{et/R})Ω) = (Ω,Φ(ǧ{et/R})Φ(f)Ω) (81)

The geodesic and antipodal spectral conditions
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We can introduce an “energy operator” Eh(x0) associated with the geodesic h(x0) by considering in
H the continuous unitary representation {U t

h(x0)
; t ∈ R} of the time-translation group Th(x0) and its

spectral resolution

U t
h(x0)

=

∫ ∞

−∞

eiωtdEh(x0)(ω); (82)

This defines (on a certain dense domain of H containing Φ(B)Ω) the self-adjoint operator

Eh(x0) =

∫ ∞

−∞

ωdEh(x0)(ω). (83)

For any pair of vector states Ψ(1) = Φ(f⋆)Ω, Ψ(2) = Φ(g)Ω, the corresponding correlation function
given in Eq. (70) can be written as follows:

W(f,g)(t) = (Φ(f⋆)Ω, U t
h(x0)

Φ(g)Ω), (84)

which shows that W(f,g)(t) is a continuous and bounded function. In view of Eq. (82) it can be expressed
as the Fourier transform of the bounded measure

W̃(f,g)(ω) = (Φ(f⋆)Ω, dEh(x0)(ω)Φ(g)Ω) (85)

Similarly, one has:
W ′(f,g)(t) = (Φ(g⋆)Ω, U−th(x0)

Φ(f)Ω), (86)

which is the Fourier transform of

W̃ ′(f,g)(ω) = (Φ(g⋆)Ω, dEh(x0)(−ω)Φ(f)Ω). (87)

Eqs. (85) and (87) are valid for arbitrary f and g in B. Now, if f and g have supports in Uh(x0), the
functions W(f,g)(t) and W ′(f,g)(t) satisfy the KMS relations (74) and their Fourier transforms satisfy (as

bounded measures) the following relation which is equivalent to Eq. (74):

W̃ ′(f,g)(ω) = e−2πRωW̃(f,g)(ω). (88)

Moreover, if we rewrite the antipodal condition (81) as follows (with notations similar to those of
Eqs. (70) and (71)):

W(f,g)(t+ iπR) = W(f,ǧ)(t) = W(ǧ,f)(t) (89)

we see that the corresponding Fourier transforms satisfy the following equivalent relations:

W̃(f,ǧ)(ω) = W̃(ǧ,f)(ω) = e−πRωW̃(f,g)(ω). (90)

We have thus proved the

Theorem 3 i) For every pair of states Ψ(1) = Φ(f⋆)Ω, Ψ(2) = Φ(g)Ω in P(Uh(x0))Ω, the corresponding
matrix elements of the spectral measure dEh(x0)(ω) satisfy the following geodesic spectral condition:

(Φ(g⋆)Ω, dEh(x0)(−ω)Φ(f)Ω) = e−2πRω(Φ(f⋆)Ω, dEh(x0)(ω)Φ(g)Ω) (91)

ii) Moreover, the previous matrix elements of the spectral measure are also related to a third one which
involves the antipodal state Φ(ǧ)Ω in P(Ǔh(x0))Ω, by the following antipodal spectral condition:

(Φ(f⋆)Ω, dEh(x0)(ω)Φ(ǧ)Ω) = e−πRω(Φ(f⋆)Ω, dEh(x0)(ω)Φ(g)Ω). (92)
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Remark 3 i) The geodesic spectral condition (91) gives a precise content to the statement that in
the region Uh(x0) corresponding to an observer living on the geodesic h(x0), the energy measurements
(relative to this observer) give exponentially damped expectation values in the range of negative energies.
In the limit of flat space-time the l.h.s. of Eq. (91) would be equal to zero for ω > 0, which corresponds
to recovering the usual spectral condition of “positivity of the energy”.

ii) The antipodal spectral condition (92) asserts that the spectral measure dEh(x0) has exponentially
damped matrix elements, in the high energy limit, between states localized in the mutually antipodal
regions Uh(x0) and Ǔh(x0).

Remark 4 All the features that have been discussed in this section are also naturally interpreted in
terms of the existence of an antiunitary involution J relating the algebras P(Uh(x0)) and P(Ǔh(x0)) and
the validity of the corresponding Bisognano-Wichmann duality theorem for the Von Neumann algebras
A(Uh(x0)) and A(Ǔh(x0)) [1, 3].

5 A consequence of positivity and weak spectral condition: the

Reeh-Schlieder property

In this section we wish to show that the vector-valued distributions fn 7→ 〈Φ(b)
n , fn〉, (which are provided

by the GNS construction, see Eq. (13)), are boundary values of vector-valued functions holomorphic in

the tuboids Zn = Zn+ = Zn, d+1 ∩X(c)n
d , where

Zn, d+1 =
{
z ∈ Cn(d+1); y1 ∈ V+, yj − yj−1 ∈ V+, j = 2, . . . , n

}
, (93)

with, in particular, the Reeh-Schlieder property as a consequence. Let us also recall the definition of

Z ′n = Z ′n+ =
{
z ∈ X

(c)n
d ; yn ∈ V−, yj − yj−1 ∈ V+, j = 2, . . . , n

}
.

In the Minkowskian, flat, d-dimensional case, assuming the temperedness condition, as a consequence

of the spectral condition (see e.g. [25]), the vector-valued distribution Φ
(b)
n is the Fourier transform of a

vector-valued tempered distribution with support in the cone dual to the base of the tube Zn, d. Hence

Φ
(b)
n is the boundary value of a function holomorphic in Zn, d. This fact can also be seen, in this case,

by using the maximum principle and the fact that the distinguished boundary of Zn, d is Rdn. These
tools are not available in the de Sitterian case, but, as mentioned before, a theorem of V. Glaser, stated
below, can be used in conjunction with the positivity and weak spectral conditions, to prove:

Theorem 4 There exists, for each n ≥ 1, a function Φn holomorphic in Zn with values in H such that

Φ
(b)
n is the boundary value of Φn in the sense of distributions and of the Hilbert space topology.

Theorem 4 implies the Reeh-Schlieder property:

Theorem 5 (Reeh-Schlieder) For every open subset O of Xd, the vacuum is cyclic for the algebra of
all field polynomials localized in O.

Proof. For every Ψ ∈ H and every n ≥ 1, the distribution (Ψ, Φ
(b)
n ) is the boundary value of the

function z 7→ (Ψ, Φn(z)), holomorphic in Zn. If O is an open subset of Xd such that (Ψ, 〈Φ(b)
n , ϕ〉)

vanishes for every ϕ ∈ D(On) then it vanishes for all ϕ ∈ D(Xd) by analytic continuation, and since
the vector space P(Xd)Ω is dense in H, this implies that Ψ = 0. Therefore the vector space generated

by {〈Φ(b)
n , ϕ〉 : ϕ ∈ D(On), n ∈ N} is dense in H.

For proving theorem 4 we shall make use of the following immediate consequence of the weak spectral
condition
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Proposition 4 For each pair of integers (m,n), the function (w, z) 7→ Wm+n(w, z), (w ∈ X
(c)m
d ,

z ∈ X
(c)n
d ), is holomorphic in the corresponding topological product Z ′m ×Zn.

We are now in a position to apply the following theorem proved by V. Glaser in [17] (see also a re-
statement in [18]). We suppose given a finite sequence of non-empty domains Un ⊂ CNn , 1 ≤ n ≤ M ,
where the Nn are integers and Nn ≥ 1. We set N0 = 0, i.e. U0 can be considered as consisting of a
single point. U∗n will denote the complex conjugate domain of Un. For n ≥ 1, λn denotes the Lebesgue
measure in CNn ≡ R2Nn .

Glaser’s theorem 1 For each pair of integers (n, m) with 0 ≤ n, m ≤M , let (pn, qm) 7→ Anm(pn, qm)
be a holomorphic function on Un×U∗m. (In particular A0 0 is just a complex number.) Then the following
properties are equivalent:
(G.0) For each n ∈ [1, M ], there is an open neighborhood Vn of 0 in RNn and a point pn ∈ Un such
that pn + Vn ⊂ Un and, for each sequence {fn}0≤n≤M , f0 ∈ C, fn ∈ D(Vn) for n > 0,

∑

0≤n, m≤M

∫

RNn×RNm

Anm(pn + hn, p̄m + km) f̄n(hn)fm(km)dhn dkm ≥ 0 (94)

(with an obvious meaning when n or m is equal to 0).
(G.1) For every sequence {gn}0≤n≤M , g0 ∈ C, gn ∈ D(Un) for n > 0,

∑

0≤n, m≤M

∫

Un×Um

Anm(pn, q̄m) ḡn(pn) gm(qm) dλn(pn)dλm(qm) ≥ 0. (95)

(G’.1) For each n ∈ [1, M ], there is an open subset ωn of Un such that for every sequence {gn}0≤n≤M ,
g0 ∈ C, gn ∈ D(ωn) for n > 0,

∑

0≤n, m≤M

∫

ωn×ωm

Anm(pn, q̄m) ḡn(pn) gm(qm) dλn(pn)dλm(qm) ≥ 0. (96)

(G.2) There is a sequence {fν, 0}ν∈N ∈ C and, for each n ∈ [1, M ], a sequence {fν, n}ν∈N of functions
holomorphic in Un, such that

Anm(pn, qm) =
∑

ν∈N

fν, n(pn) fν, m(q̄m) (97)

holds in the sense of uniform convergence on every compact subset of Un × U∗m, again with an obvious
meaning when n or m is equal to 0.
(G.3) For every sequence {pn ∈ Un}1≤n≤M , and every finite sequence {a(n)α} of complex numbers,

Qp(a, a) =
∑

n, m

∑

α, β

a(n)α ā(m)β
α!β!

∂αpn
∂βp̄m

Anm(p, p̄) ≥ 0. (98)

(G.4) There is a particular sequence {pn ∈ Un}1≤n≤M such that, for every finite sequence {a(n)α} of
complex numbers, Qp(a, a) ≥ 0.

The following striking theorem, also proved in [17] is mentioned here for completeness although it is not
used in the proof of theorem 4:

Glaser’s theorem 2 Let U be a non-empty simply connected domain in CN (with N ≥ 1), and F
a distribution over U , such that, for every finite sequence {aα} of complex numbers indexed by N -
multiindices, ∑

α, β

aα āβ
α!β!

∂α ∂̄βF ≥ 0 (99)
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(in the sense of distributions). Then there is a function (p, q) 7→ A(p, q), holomorphic on U × U∗ and
possessing the properties (G.1)-(G.3) of Glaser’s theorem 1 (in the case M = 1), such that F coincides
with p 7→ A(p, p̄).

Remarks.
1) The statement of Glaser’s theorem 1 does not literally coincide with the original in [17], but it follows
from the proofs given there.
2) In the condition (G.1) one can equivalently require the gn to be arbitrary complex measures with
compact support contained in Un. Since any measure can be weakly approximated by finite linear
combinations of Dirac measures, the condition (G.1) is equivalent to
(G”.1) For every finite sequence {(cn,l, tn,l) : cn,l ∈ C, tn,l ∈ Un, 0 ≤ n ≤M, 1 ≤ l ≤ L},

M∑

n, m=0

L∑

l, k=1

cn,lcm,kAn m(tn,l, tm,k) ≥ 0. (100)

3) Apart from condition (G.0), the properties mentioned in these theorems are essentially invariant
under holomorphic self-conjugated coordinate changes and in fact the various Un can be replaced by
connected complex manifolds which are separable at infinity (i.e. are unions of increasing sequences of
compacts) as it can be seen from the sketch of the proof given in Appendix C.

Proof of Theorem 4
Taking into account the previous remark 3), we shall apply Glaser’s theorem 1 to the case when each

Un is the domain Zn of the corresponding manifold X
(c)n
d and

A0 0 = 1, Anm(z, w) = Wm+n(w←, z) = Wm+n(wm, . . . , w1, z1, . . . , zn, ) (101)

with n, m ∈ [0, M ], M being any fixed integer.
In fact, in view of proposition 4 and of the remark that

Z∗m = {w = (w1, . . . , wm) ∈ X
(c)m
d ; w← = (wm, . . . , w1) ∈ Z ′m}, (102)

it follows that for all pairs of integers (n,m) the functions defined by Eq. (101) are holomorphic in
the corresponding domains Zn ×Z∗m. Now our aim is to prove that, as a consequence of the positivity
property (11), these functions possess the properties (G.0)-(G.4) of Glaser’s theorem 1. Let a be a
particular point of Xd (e.g. a = (0, . . . , 0, R)). It is clear that we can define, for each n ≥ 1, a
holomorphic diffeomorphism σn of an open ball centered at 0 in Cnd onto a complex neighborhood Nn

of an = (a, a, . . . , a) in X
(c)n
d with the following properties:

1. σn is self-conjugate, i.e. σn(z̄) = σn(z) for all z.

2. σn(0) = an

3. σn maps the “local tube”

{z = x+ iy ∈ Cnd : |zj | < 1, 0 < yj , 1 ≤ j ≤ nd} (103)

into Zn ∩ Nn.

In σ−1n (Nn ∩ Zn) × σ−1m (Nm ∩ Z∗m), there holds (in view of the distribution character of the boundary
values of the An m on Xn+m

d ):

|Anm(σn(z), σm(z′))| ≤ K(
∑

j

|Im zj|−r +
∑

j

|Im z′j |−r), (104)

where K > 0 and r ≥ 0 may be taken independent of n, m ∈ [1, M ].

22



By composing σn with zj = th (ζj/2), we obtain a self-conjugate holomorphic diffeomorphism τn of
the tube

{ζ = ξ + iη ∈ Cnd : |ηj | < π/2, 1 ≤ j ≤ nd} (105)

onto a complex neighborhood of an in X
(c)n
d such that τn(0) = an and the image of the tube

Θn = {ζ = ξ + iη ∈ Cnd : 0 < ηj < π/2, 1 ≤ j ≤ nd}. (106)

is contained in Zn. Let
Bnm(ζ, ζ′) = Anm(τn(ζ), τm(ζ′)). (107)

The functions Bnm are holomorphic in Θn ×Θ∗m. Since for ζ = ξ + iη ∈ C,

th (ζ/2) =
sh ξ + i sin η

2|ch (ζ/2)|2 , (108)

the Bnm satisfy

|Bnm(ζ, ζ′)| ≤ K ′
∑

j

(
e|ξj |

| sin ηj |

)r

+K ′
∑

j

(
e|ξ

′

j |

| sin η′j |

)r

,

∀ζ = ξ + iη ∈ Θn, ζ
′ = ξ′ + iη′ ∈ Θ∗m.

(109)

They have boundary values B
(v)
nm in the sense of generalized functions over test-functions of faster than

exponential decrease. These boundary values satisfy, for each finite sequence {fn}, f0 ∈ C, fn ∈ D(Rnd)
for n ≥ 1, ∑

n, m

∫
B(v)

nm(ξ, ξ′)fn(ξ) fm(ξ′) dξ dξ′ ≥ 0. (110)

Let now

ρn, ε(ξ) = C(ε) exp


−

nd∑

j=1

(ξ2j /ε)


 , (111)

where C(ε) is chosen so that
∫
ρn, ε(ξ) dξ = 1. For each µ ∈ Cnd, the function ξ 7→ ρn, ε(ξ + µ) is of

gaussian decrease, and depends holomorphically on µ. In particular if µn ∈ Θn, µ
′
m ∈ Θ∗m,

∫

Rnd×Rmd

B(v)
nm(t, t′) fn(ξ) ρn, ε(t− µn − ξ) fm(ξ′)ρm, ε(t′ − µ̄′m − ξ′) dt dt′ dξ dξ′

=

∫

Rnd×Rmd

Bnm(t+ µn, t
′ + µ′m) fn(ξ) ρn, ε(t− ξ) fm(ξ′)ρm, ε(t′ − ξ′) dt dt′ dξ dξ′,

(112)

since both sides define analytic functions in Θn ×Θ∗m whose boundary values for real µn, µ
′
m coincide.

The lhs satisfies the positivity conditions, by virtue of Eq. (110), if we chose µ′n = µ̄n for all n. It
follows, by letting ε tend to 0 in the rhs, that the functions Bnm have the property (G.0) of Glaser’s
theorem 1 and therefore all the properties (G.0)-(G.4) in the sequence of domains {Θn}. Coming back
to the original variables, Glaser’s theorem 1 now shows that the same properties, in particular (G.2),
extend to the entire tuboid {Zn}. We have thus proved the following

Proposition 5 For any integer M ≥ 1, there exist a sequence {Fν, 0 ∈ C}ν∈N and, for each integer
n ∈ [1, M ], a sequence {Fν, n}ν∈N of functions holomorphic in Zn, such that, for every n and m in
[1, M ], z ∈ Zn, w ∈ Z∗m,

Wm+n(w←, z) =
∑

ν∈N

Fν, m(w̄)Fν, n(z), (113)

where the convergence is uniform on every compact subset of Z∗m ×Zn.
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In particular

W2n(z̄←, z) =
∑

ν∈N

|Fν, n(z)|2, (114)

(so that if the temperedness condition holds, each Fν, n has polynomial behavior at infinity and near
the reals).

Let now {ϕm}1≤m≤M be a sequence of test-functions, ϕm ∈ D(Xm
d ), ϕ0 ∈ C. We continue to denote

ϕm a C∞ extension of ϕm with compact support over X
(c)m
d . Let C(m, ε) be, for each m ∈ [1, M ] and

ε ≥ 0, an (md)-cycle, contained in Zm for ε > 0, equal to Xm
d for ε = 0, and continuously depending on

ε. Using proposition 5 and Schwarz’s inequality, we find, for any z ∈ Zn (n being fixed and M chosen
arbitrarily such that n ≤M),

∣∣∣∣∣∣

∑

0≤m≤M

∫

C(m, ε)

ϕm(w)Wm+n(w̄←, z) dw̄1 ∧ . . . ∧ dw̄m

∣∣∣∣∣∣

2

=
∣∣∣
∑

ν∈N [
∑

0≤m≤M

∫
C(m, ε)

ϕm(w)Fν, m(w)dw̄1 ∧ . . . ∧ dw̄m]Fν, n(z)
∣∣∣
2

≤
∑

ν∈N

|Fν, n(z)|2 ×
∑

0≤m, k≤M

∫

C(m, ε)×C(k, ε)

ϕm(w)ϕk(w
′)Wm+k(w̄←, w

′) dw̄1 ∧ . . . ∧ dw̄m ∧ dw′1 ∧ . . . ∧ dw′k.

(115)

Taking Eq. (114) into account and letting ε tend to 0 then yield:

∣∣∣∣∣∣

∑

0≤m≤M

∫

Xm
d

ϕm(w)Wm+n(w←, z) dw1 . . . dwm

∣∣∣∣∣∣

2

≤ W2n(z̄←, z)

∥∥∥∥∥∥

∑

0≤m≤M

∫

Xd

Φ(b)
m (w)ϕm(w) dw

∥∥∥∥∥∥

2

.

(116)

Since the latter holds for any (arbitrarily large) value of M , namely for a dense set of vectors Φ(ϕ) Ω
in H, this shows that for every n there is a vector Φn(z) ∈ H such that

(∫

Xd

Φ(b)
m (w)ϕm(w) dw, Φn(z)

)
=

∫

Xd

Wm+n(w←, z)ϕm(w) dw. (117)

Integrating similarly in z over a cycle such as C(n, ε), and letting ε tend to 0 show that Φn admits

Φ
(b)
n as its boundary value in the sense of distributions and theorem 4 follows.

Remarks
1. This proof is valid for some other spaces besides de Sitter space. What is really used is that the space
is real-analytic and that the Wightman distributions are boundary values of functions Wm+n(w←, z)
holomorphic in products of the form U∗m × Un, where the Un are connected complex tuboids.
2. Neither temperedness nor locality have been used.
3. By using the PCT property, the BW analyticity and the Reeh-Schlieder property it is possible to
restate the full Bisognano-Wichmann theorem in the de Sitter case. We do not give here the details.
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A Appendix. A lemma of analytic completion

In this appendix we prove a simple lemma of analytic completion by applying the convex tube theorem,
according to which any function which is holomorphic in a tube Rn + iB, where B is a domain in Rn,
can be analytically continued in the convex hull of this tube. (See [4, 35, 15, 14]). C+ denotes the upper
half-plane.

Lemma 3 (i) Let
P = {z ∈ CN : |zj | < 1, Im zj > 0, ∀j = 1, . . . , N} (118)

Let D be a domain in CN , containing P , and Ω a domain in C×CN of the form

Ω = N ∩ (C+ ×D), (119)

where N is an open neighborhood, in C1+N , of the set

(
(R \ {0})×D

)
∪
(
(C+ \ {0})× {z ∈ CN : |zj | < 1, Im zj = 0, ∀j = 1, . . . , N}

)
. (120)

Then any function holomorphic in Ω has a holomorphic extension in C+ ×D.
(ii) Let D′ be a domain in CN , containing

Q = {z ∈ CN : |zj | < 1, ∀j = 1, . . . , N}, (121)

and Ω′ a domain in C×CN of the form

Ω′ = (C+ ×Q) ∪ (N ′ ∩ (C+ ×D′)), (122)

where N ′ is an open neighborhood, in C1+N , of (R \ {0})×D′. Then any function holomorphic in Ω′

has a holomorphic extension in C+ ×D′.

Remark 5 By setting w = eπσ the upper half-plane can be replaced by the strip {σ : 0 < Imσ < 1},
and R \ {0} by the boundary of that strip.

1. We start by proving Lemma 3 (i) for the case when D = P . This follows from:

Lemma 4 Let a ∈ (0, 1) and ∆′a a domain in C×CN of the form V ∩ (C+ × P ), where V is an open
neighborhood in C1+N of

{(w, z) ∈ C1+N : w ∈ R : a < |w| < 1/a}, z ∈ P} ∪
{(w, z) ∈ C1+N : w ∈ C+ ∪ (−1/a, −a) ∪ (a, 1/a), |zj | < 1, Im zj = 0, ∀j = 1, . . . , N}.

(123)
Then any function f holomorphic in ∆′a has a holomorphic extension in the domain

∆a =
⋃

0<θ<π

Wa(θ) × Z(θ), (124)

where:

Z(θ) = {z ∈ CN : ∀j = 1, ... N, Im zj > 0, 2 Im log

(
1 + zj
1− zj

)
< θ }, (125)

Wa(θ) = {w ∈ C : 0 < Imw, 0 < ImΦ(w, a) < π − θ }, (126)

Φ(w, a) = iπ − log

(
w − a−1

w − a

)
− log

(
w + a

w + a−1

)
, (Imw 6= 0). (127)

25



Remark 6 The function w 7→ ImΦ(w, a) is the bounded harmonic function in the upper half-plane
with boundary values equal to 0 on the real segments (−a−1, −a) and (a, a−1), and to π on the other
real points. π − ImΦ(w, a) is the sum of the angles under which these two segments are seen from the
point w.

Proof. We shall make use (at several places and in several complex variables) of the following conformal
map. For A > 0 and B > 0, we denote L(A, B) the open lunule in the W -plane bounded by the
real segment [−A, A] and the circular arc going through the points −A, iB, and A. This domain is
conformally mapped onto the strip {λ ∈ C : 0 < Imλ < 2Arctg (B/A)} by the map

W 7→ λ = log

(
A+W

A−W

)
, (128)

whose inverse is
λ 7→W = A th (λ/2). (129)

Both the hypotheses of Lemma 4 and the function Φ are left invariant by the transformation w 7→ −1/w.
In fact, denoting b = a−1 and

µ(w) = w − 1/w (130)

we have
(w − b)(w + a)

(w − a)(w + b)
=

µ− (b − a)

µ+ (b − a)
≡ −1/ϕ(µ), (131)

Φ(w, a) = log ϕ(µ). (132)

A function f holomorphic in ∆′a can be rewritten in the form:

f(w, z) = fs(w, z) + (w + w−1)fa(w, z), (133)

where

fs(w, z) =
1

2
(f(w, z) + f(−w−1, z)), fa(w, z) =

1

2(w + w−1)
(f(w, z)− f(−w−1, z)). (134)

Both fs and fa are easily seen to have the properties postulated for f itself, and they are moreover
invariant under the transformation w 7→ −w−1. They can therefore be written as holomorphic functions
Fs,a(µ, z) of µ = w − w−1 and z. We now perform the change of coordinates

µ 7→ ω = logϕ(µ), zj 7→ ζj = 2 log ((1 + zj)/(1− zj)), (135)

i.e. define
Gs,a(ω, ζ) = Fs,a(µ, z) with (136)

µ = (b− a)th (ω/2), (137)

zj = th (ζj/4). (138)

The functions Gs,a are holomorphic in a domain of the following form, which is the image of the domain
∆′a into the space of variables (ω, ζ) (after taking the successive maps given in Eqs. (130),(131) and
(135) into account):

U1 = V1 ∩ {(ω, ζ) ∈ C1+N : 0 < Imω < π, 0 < Im ζj < π}, (139)

where V1 is an open neighborhood, in C1+N , of the set

S1 = {(ω, ζ) ∈ C1+N : ω ∈ R, 0 < Im ζj < π} ∪ {(ω, ζ) ∈ C1+N : 0 ≤ Imω < π, Im ζj = 0}
= {(ω, ζ) ∈ C1+N : ω ∈ R, 0 ≤ Im ζj < π} ∪ {(ω, ζ) ∈ C1+N : 0 ≤ Imω < π, Im ζj = 0}.

(140)
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The domain U1 of Eq. (139) is not a tube. We can however inscribe in it increasing unions of topological
products of lunules which are isomorphic to tubes. In fact, for every A > 1

π , there exists an ε > 0 such
that U1 contains

VA = {(ω, ζ) ∈ C1+N : ω ∈ L(A, ε), ζj ∈ L(A, π − 1/A)}
∪ {(ω, ζ) ∈ C1+N : ω ∈ L(A, π − 1/A), ζj ∈ L(A, ε)}. (141)

Using the conformal map (128) in all variables, we can map VA into a tube whose holomorphy envelope
is its convex hull. Returning to the variables (ω, ζ), and taking the limit A → ∞ shows that the
functions Gs,a are holomorphic in the interior of the convex hull of S1, namely

⋃

0<θ<π

{(ω, ζ) ∈ C1+N : 0 < Imω < π − θ, 0 < Im ζj < θ, ∀j}. (142)

This set is the image of the domain ∆a introduced in Eq. (124) under the mapping w 7→ µ = w−w−1 7→
ω, z 7→ ζ defined in Eq. (135), and therefore the assertion of Lemma 4 follows.

Lemma 3 (i) in the special case D = P follows from the latter by letting a tend to 0.
2. We now prove Lemma 3 (ii) in the case when D′ = ρQ for some real ρ > 1. The proof of this is the
same as that of Lemma 4, except that the change of coordinates (138) is replaced by

zj = exp(iζj), (1 ≤ j ≤ N). (143)

This again allows the use of the tube theorem.
3. Lemma 3 (ii) follows from this by using chains of polydisks, and (i) follows in the same way from the
special case D = P and (ii).

B Appendix. A lemma of Hall and Wightman

In [23], Hall and Wightman prove the following lemma

Lemma 5 Let M ∈ L+(C) be such that T+ ∩M−1T+ 6= ∅. There exists a continuous path t 7→ M(t)
from the interval [0, 1] into L+(C) such that M(0) = 1, M(1) = M and that, for every z ∈ T+ ∩
M−1 T+ ⊂ Cd+1, M(t)z ∈ T+ holds for all t ∈ [0, 1].

This lemma is proved in [23] for the case d + 1 ≤ 4 (a very clear exposition also appears in [32]).
It is extended to all dimensions in [24]. We give another proof based on holomorphic continuation. As
noted in the above references, if M ∈ L+(C) is such that the statement in Lemma 5 holds, then it holds

for Λ1MΛ2 for any Λ1, Λ2 ∈ L↑+, as well as for M
−1. It is therefore sufficient to consider the case when

M is one of the normal forms classified by Jost in [24]. M can then be written in the form:

M =

(
M1(i) 0

0 M2(i)

)
(144)

where t 7→ M1(t) is a one-parameter subgroup of the p × p Lorentz group, real for real t, with p ≤ 3,
and t 7→ M2(t) is a one-parameter subgroup of the (d + 1− p)× (d + 1 − p) orthogonal group, real for
real t. In the generic case p ≤ 2, M1(t) = 1 if p = 1 and, if p = 2, M1(t) = [exp at] for some real a with
|a| ≤ π. We focus on this case first. Replacing M by M−1 if necessary, we may assume 0 < a ≤ π. For
any z ∈ T+ the set ∆(z, M) = {t ∈ C : M(t)z ∈ T+} is invariant under real translations, i.e. is a
union of open strips parallel to the real axis. Let

E(M) = {T+ ∩M−1T+} = {z ∈ Cd+1 : R ∪ (i+R) ⊂ ∆(z, M)}.

Denote z(s) = (z(0), z(1), sz(2), . . . , sz(d)). If z ∈ E(M), then z(s) ∈ E(M) for all s ∈ [0, 1]. The
set ∆(z(0), M) contains the segment i[0, 1], and hence i[0, 1] ⊂ ∆(z′, M) for all z′ in a sufficiently
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small neighborhood N of z(0). For n ∈ V+ \ {0} and b ∈ C, with Im b ≥ 0, the function (t, z) 7→
Hn, b(t, z) = (n · M(t)z + b)−1 is holomorphic in {(t, z) : z ∈ E(M), t ∈ ∆(z, M)}. Applying
Lemma 3ii), with w replaced by the variable σ of Remark 5, it follows that Hn, b is holomorphic in
{t : 0 < Im t < 1} × E(M). Let us now assume that for some z ∈ E(M) and some t ∈ i[0, 1]
the corresponding point ζ = M(t)z belongs to the complement of T+; then, as explained below, one
can determine n and b satisfying the previous conditions and such that n · ζ + b = 0, which therefore
contradicts the previously proved analyticity property of the corresponding function Hn, b. In fact, for
any complex point ζ = ξ + iη in the complement of T+ (i.e. η /∈ V+), one can find n ∈ Rd+1 and c ∈ R
such that n · η + c = 0, while n · r + c > 0 for all r ∈ V+. This implies n ∈ V+ \ {0} and c ≥ 0. Hence
there is a b ∈ C with Im b = c ≥ 0 such that n · ζ + b = 0 (while Im (n · q + b) > 0 for all q ∈ T+). This
proves Lemma 5 for all dimensions.

C Appendix. Sketch of the proof of Glaser’s theorem 1

This section closely follows the original [17] with a few unimportant alterations, mainly intended for the
cases when Un might not be simply connected. The notations are those of Glaser’s theorem 1, and we
also denote Ũn the universal covering space of Un, ιn the canonical projection of Ũn onto Un. If V is a
complex manifold, A(V) denotes the set of holomorphic functions on V . It is clear that (G.1) ⇒ (G’.1).
The latter implies (G.0), by inserting gn(zn) = f(zn − pn)δ(Im (zn − pn)) in G’.1. In turn (G.0) implies
(G.4) by inserting fn(hn) =

∑
α aα(n)∂

αδ(hn) in (G.0).
1. The first step of the proof is to show that (G.4) ⇒ (G.3). Assume that (G.4) holds. Let, for each
n ∈ [1, M ], Rn > 0 be such that the closure of the polydisk Pn = {zn ∈ CNn : |zn,j − pn,j| < Rn∀j}
is contained in Un. For any {zn ∈ Pn}1≤n≤M and every finite sequence b(n)α,

Qz(b, b) = Qp(a, a), (145)

a(n)α = α!
∑

γ≤α

bγ(zn − pn)
α−γ

γ! (α− γ)!
(146)

Although the sequence {a(n)α}α∈NNn is infinite, the convergence of the power series for Qz(b, b) and a
limiting argument show that Qz(b, b) ≥ 0. Thus the property (G.4) propagates everywhere, i.e. (G.3)
holds.
2. As our next step, we prove that (G.4) implies that (G’.1) holds within the same sequence of polydisks
{Pn}n∈[1, M ] just used. We first prove this in the form of condition (G”.1), i.e. in case gn is a finite
linear combination of Dirac measures, i.e.

gn(zn) =

L∑

r=1

cn,rδ(zn − tn,r), (147)

with tn,r ∈ Pn. Indeed

M∑

n, m=0

L∑

r, s=1

cn,rcm,sAn m(tn,r, tm,s) = Qp(a, a), (148)

with

a(n)α =
L∑

r=1

cn,r(tn,r − pn)
α. (149)

The sequence {a(n)α} is again infinite, but we can still conclude that Qp(a, a) ≥ 0, i.e. that (G”.1),
and hence (G’.1) hold in the sequence of domains {Pn}n∈[1, M ].
3. To prove that (G’.1) in the sequence of polydisks {Pn}n∈[1, M ] implies the property (G.2) within the
same sequence, we introduce a Hilbert space E = E0⊕ . . . EM as follows: E0 = C. For each n ∈ [1, M ],
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En = A(Un) ∩ L2(Pn, λn). It is well-known (see [B]) that En is a closed subspace of L2(Pn, λn), and
that the convergence of a sequence {ψν ∈ En}ν∈N in the sense of En implies its uniform convergence
on every compact subset of Pn The operator AP defined on E by

(g, AP f) =

M∑

m, n=0

∫

Pn×Pm

gn(pn)An m(pn, q̄m) fm(qm) dλn(pn) dλm(qm) (150)

is Hilbert-Schmidt and positive by virtue of the property (G’.1). The spectral decomposition of this
operator therefore yields the existence of a sequence {ϕν = (ϕν, 0, . . . , ϕν, M ) : ν ∈ N} of eigenvectors
of AP corresponding to non-negative eigenvalues. Hence there is a sequence {fν ∈ E} such that

Anm(pn, q̄m) =
∑

ν∈N

fν, n(pn) fν, m(qm) (151)

holds for all n, m ∈ [0, M ], uniformly on every compact subset of Pn × Pm.

4. We now show that for each n and ν, fν, n extends to a function holomorphic on Ũn. Let zn ∈ Pn and
suppose that the closure of a polydisk P ′n with radius R′ centered at zn is contained in Un. The Taylor
coefficients of An n at zn satisfy

∂α ∂̄α

α!2
An n(zn, z̄n) =

∑

ν

∣∣∣∣
∂αfν, n(zn)

α!

∣∣∣∣
2

≤ C R′2|α|. (152)

Hence the power series for fν, n at (zn) converges in P
′
n. Moreover the expansion (151) continues to hold

in P ′n × P ′m. To see this it suffices, by Schwartz’s inequality, to prove that
∑

ν |fν, n(wn)|2 converges in
P ′n. We fix n ≥ 1 and temporarily denote gν, α = ∂αfν, n(zn)/α!. For any κ ∈ (0, 1), by Schwartz’s
inequality, ∣∣∣∣∣

∑

α

|gν, α|(κ2R′)|α|
∣∣∣∣∣

2

≤ (1− κ2)−Nn

∑

α

|gν, α|2(κ2R′2)|α|, (153)

and by Eq. (152),

∑

ν

∣∣∣∣∣
∑

α

|gν, α|(κ2R′)|α|
∣∣∣∣∣

2

≤ C(1 − κ2)−2Nn . (154)

In particular for any ε > 0, it is possible to chose S such that

∑

ν≥S

∣∣∣∣∣
∑

α

|gν, α|(κ2R′)|α|
∣∣∣∣∣

2

≤ ε (155)

so that, for any ζ with |ζ| < κ2R′, ∑

ν≥S

|fν, n(zn + ζ)|2 ≤ ε, (156)

∑

ν

|fν, n(zn + ζ)|2 ≤ C(1− κ2)−2Nn . (157)

Therefore there exists a function f̃ν, n holomorphic on Ũn and a component P̂n of ι−1n (Pn) such that

f̃ν, n coincides with fν, n ◦ ιn on P̂n. The expansion

Ãn m(ζn, ζ̄m)
def
= An m(ιn(ζn), ιm(ζm)) =

∑

ν

f̃ν, n(ζn) f̃ν, m(ζm) (158)

holds uniformly on every compact subset of Ũn × Ũm. Therefore the sequence {Ãn m} posesses the

property (G”.1) in {Ũn}. It follows that the {An m} possess the property (G”.1) in {Un}, since the

points tn, r can be lifted in an arbitrary way to points in Ũn.
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5. For each n ∈ [1, M ], we now define a measure ρn on Un as follows. Let first dµn(pn) = e−ϕn(pn) dλn(pn)
where the smooth real function ϕn is chosen such that

∫
Un
dµn(pn) = 1. We then define dρn(pn) =

(1+An n(pn, p̄n))
−1 dµn(pn). Let F0 = C, and, for each n ∈ [1, M ], let Fn = A(Un)∩L2(Un, ρn). Note,

e.g. that for any fixed qn ∈ Un, the function pn 7→ An n(pn, q̄n) belongs to Fn. Let F = F0 ⊕ . . .⊕ FM .
The operator A defined on F by

(g, A f) =

M∑

m, n=0

∫

Un×Um

gn(pn)An m(pn, q̄m) fm(qm) dρn(pn) dρm(qm) (159)

is Hilbert-Schmidt and positive, and we again conclude that there exists a sequence {hν ∈ F : ν ∈ N}
such that

An m(pn, q̄m) =
∑

ν∈N

hν, n(pn)hν, m(qn) (160)

holds uniformly on every compact subset of Un × Um as well as in the sense of Fn ⊗ Fm.
This concludes the proof of Glaser’s theorem 1.

Remarks
1. The extension to the case when the Un are complex manifolds which are separable at infinity is
straightforward.
2. The requirement that U be simply connected in Glaser’s theorem 2 is necessary as the following
example shows. Let U = C \ {0} and A(p, p̄) = |p|. This satisfies the assumptions of Glaser’s theorem
2 since A(p, p̄) =

√
p
√
p̄. But there cannot be a sequence fν of functions holomorphic on U such that

A(p, p̄) =
∑

ν |fν(p)|2, since |fν(p)| ≤
√
|p| implies that fν is analytic at 0, hence entire and necessarily

0.
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