Skip to main content
Log in

Nashi or Williams pear fruits? Use of volatile organic compounds, physicochemical parameters, and sensory evaluation to understand the consumer’s preference

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Ripen “ready-to-eat” fruits of “Williams” and of two Nashi cultivars (“Hosui” and “Ya Li”), present contemporarily on the stores, were evaluated by physicochemical parameters (shape, skin color, firmness, total soluble solids, titratable acidity), volatile organic compounds (VOCs) emission, measured with a proton transfer reaction-time of flight-mass spectrometer (PTR–ToF–MS), either on whole and cube fruits, and sensory evaluation (panel test and consumer’s liking). The data were analyzed by ANOVA, LSD test, hierarchical clustering, PLS-DA, and CCOA. The highest differences for the physicochemical parameters were observed between Williams and Nashi, as Williams differentiated for sugar content and Hosui for firmness. By VOCs spectral analyses, it was observed that whole and cube “Williams” fruits had the highest number and amount of compounds, followed by “Ya Li;” “Hosui” was characterized by a few signals with low intensities. Fruits of each cultivar showed specific VOCs that could be used as markers for discrimination purposes. In “Williams” pears, the presence and amount of defined masses resulted linked to fruitiness and aroma perceived by the consumer. The higher sugar content and the typical pear aroma perceived by the panelists, emitted by “Williams,” could have influenced the consumer’s liking. The tasters appreciated “Hosui” for firmness, and “Ya Li” for visual, even if they resulted lower in sugar and flavor intensity. In the opinion of the respondents to the consumer test, “Williams” resulted the most appreciated both for the average scores of the acceptability and as percentage of responses at a level >5 of a nine-point hedonic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu J, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  Google Scholar 

  2. Morettini A, Baldini E, Scaramuzzi F, Mittempergher L (1967) Monografia delle principali cultivar di pero. Centro miglioramento piante da frutto e da orto CNR, Firenze

    Google Scholar 

  3. Moore JN, Ballington JR Jr (1991) Genetic resources of temperate fruit and nut crops (No. 290). International Society for Horticultural Science

  4. WAPA (World Apple and Pear Association) Apple and Pear Production by country and year (cit. 2003–2012)

  5. Hancock JF, Lobos GA (2008) In: Hancock JF (ed) Temperate Fruit crop breeding. Springer, The Netherlands

    Chapter  Google Scholar 

  6. Komes D, Kovačević K (2010) In: Hui YH (ed) Handbook of fruit and vegetable flavors. Wiley, Hoboken

  7. Predieri S, Gatti E, Rapparini F, Cavicchi L, Colombo R (2005) Sensory evaluation from a consumer perspective and its application to ‘Abate Fetel’ pear fruit quality. Acta Hort 671:349–354

    Article  Google Scholar 

  8. Rapparini F, Predieri S (2003) Pear fruit volatiles. Horticult Rev 28:237–324

    CAS  Google Scholar 

  9. Rizzolo A, Cambiaghi P, Grassi M, Eccher ZP (2005) Influence of 1-methylcyclopropene and storage atmosphere on changes in volatile compounds and fruit quality of conference pears. J Agric Food Chem 53:9781–9789

    Article  CAS  Google Scholar 

  10. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109(3):861–896

    Article  CAS  Google Scholar 

  11. Granitto PM, Biasioli F, Aprea E, Mott D, Furlanello C, Märk TD, Gasperi F (2007) Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques. Sens Actuators B Chem 121(2):379–385

    Article  CAS  Google Scholar 

  12. Ciesa F, Höller I, Guerra W, Berger J, Dalla Via J, Oberhuber M (2015) Chemodiversity in the fingerprint analysis of volatile organic compounds (VOCs) of 35 Old and 7 modern apple cultivars determined by proton-transfer-reaction mass spectrometry (PTR-MS) in two different seasons. Chem Biodivers 12(5):800–812

    Article  CAS  Google Scholar 

  13. Masi E, Romani A, Pandolfi C, Heimler D, Mancuso S (2015) PTR-TOF-MS analysis of volatile compounds in olive fruits. J Sci Food Agric 95(7):1428–1434

    Article  CAS  Google Scholar 

  14. Taiti C, Costa C, Menesatti P, Comparini D, Bazihizina N, Azzarello E, Masi E, Mancuso S (2015) Class-modeling approach to PTR-TOFMS data: a peppers case study. J Sci Food Agric 95(8):1757–1763

    Article  CAS  Google Scholar 

  15. White IR, Blake RS, Taylor AJ, Monks PS (2016) Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics 12(3):1–11

    Article  CAS  Google Scholar 

  16. Taiti C, Marone E, Bazihizina N, Caparrotta S, Azzarello E, Petrucci AW, Pandolfi C, Giordani E. (2015b) Sometimes a little mango goes a long way: a rapid approach to assess how different shipping systems affect fruit commercial quality. Food Anal Methods. doi:10.1007/s12161-015-0240-5

    Google Scholar 

  17. Taiti C, Costa C, Menesatti P, Caparrotta S, Bazihizina N, Azzarello E, Petrucci AW, Masi E, Giordani E (2015) Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. Eur Food Res Technol 241(1):91–102

    Article  CAS  Google Scholar 

  18. Biasioli F, Gasperi F, Aprea E, Colato L, Boscaini E, Märk TD (2003) Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatment of red orange juice—a case study. Int J Mass Spectrom 223:343–353

    Article  Google Scholar 

  19. Thibault B, Watkins R, Smith RA (1983) Descriptor list for pear (Pyrus). IBPGR, Rome

    Google Scholar 

  20. Hunter RS (1975) Scales for the measurements of color difference. The Measurement of Appearance. Willy, New York

    Google Scholar 

  21. Francis FJ (1980) Color quality evaluation of horticultural crops. Horticultural Science, USA

    Google Scholar 

  22. AOAC (1990) Official methods of analysis. AOAC, Virginia

    Google Scholar 

  23. Costa C, Taiti C, Strano MC, Morone G, Antonucci F, Mancuso S, Claps S, Pallottino F, Sepe L, Bazihizina N, Menesatti P (2016) In: Rodriguez Mendez M (ed) Electronic noses and tongues in food science. Academic Press, Oxford

    Google Scholar 

  24. Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76:3841–3845

    Article  CAS  Google Scholar 

  25. Wyche KP, Blake RS, Ellis AM, Monks PS, Brauers T, Koppmann R, Apel EC (2007) Technical note: performance of chemical ionization reaction time-of-flight mass spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds. Atmos Chem Phys 7:609–620

    Article  CAS  Google Scholar 

  26. Aprea E, Romano A, Betta E, Biasioli F, Cappellin L, Fanti M, Gasperi F (2015) Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis. J Mass Spectrom 50(1):56–64

    Article  CAS  Google Scholar 

  27. Müller M, Graus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hortnagl L, Wohlfahrt G, Karl T, Hansel A (2010) First eddy covariance flux measurements by PTR-TOF. Atmos Meas Tech 3(2):387

    Article  Google Scholar 

  28. Cappellin L, Biasioli F, Fabris A, Schuhfried E, Soukoulis C, Tilmann DM, Gasperi F (2010) Improved mass accuracy in PTR-TOF-MS: another step towards better compound identification in PTR-MS. Int J Mass Spectrom 290:60–63

    Article  CAS  Google Scholar 

  29. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control, and environmental research. Int J Mass Spectrom Ion Process 173:191–241

    Article  CAS  Google Scholar 

  30. Caswell JA, Noelke CM, Mojduszka EM (2002) In: Barry K, Bohman M, Caswell JA (eds) Global food trade and consumer demand for quality. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  31. Koch C, Koch EC (2003) Preconceptions of taste based on color. J Psychol 137:233–242

    Article  Google Scholar 

  32. Dekhili S, D’Hauteville F (2009) Effect of the region of origin on the perceived quality of olive oil: an experimental approach using a control group. Food Qual Prefer 20:525–532

    Article  Google Scholar 

  33. Xiao C, Luo W, Liu M, Zhu L, Li M, Yang H, Deng Y (2010) Quality of fresh-cut pears (Pyrus bretschneideri Rehd cv. Huangguan) coated with chitosan combined with ascorbic acid and rosemary extracts. Philipp Agric Sci 93(1):66

    Google Scholar 

  34. Deng Y, Wu Y, Li YF (2005) Effects of high O2 levels on post-harvest quality and shelf life of table grapes during long-term storage. Eur Food Res Technol 221:392–397

    Article  CAS  Google Scholar 

  35. Lawless HT, Heymann H (1998) Sensory evaluation of food: principles and practices, 1st edn. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  36. Muñoz AM, Civille VG, Carr BT (1992) Sensory evaluation in quality control. Van Mostrand, Reinhold

    Book  Google Scholar 

  37. Crisosto CH, Crisosto GM (2005) Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biol Technol 38(3):239–246

    Article  CAS  Google Scholar 

  38. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  39. Kennard RW, Stone A (1968) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  40. Kingston CM (1992) Maturity indices for apple and pear. Hortic Rev 13:407–432

    Google Scholar 

  41. Barrett DM, Beaulieu JC, Shewfelt R (2010) Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit Rev Food Sci Nutr 50(5):369–389

    Article  Google Scholar 

  42. Harker FR, Marsh KB, Young H, Murray SH, Gunson FA, Walker SB (2002) Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biol Technol 24(3):241–250

    Article  Google Scholar 

  43. Mehinagic E, Royer G, Symoneaux R, Bertrand D, Jourjon F (2004) Prediction of the sensory quality of apples by physical measurements. Postharvest Biol Technol 34(3):257–269

    Article  Google Scholar 

  44. Chen JL, Yan S, Feng Z, Xiao L, Hu XS (2006) Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chem 97(2):248–255

    Article  CAS  Google Scholar 

  45. Arzani K, Khoshghalb H, Malakouti MJ, Barzegar M (2008) Postharvest fruit physicochemical changes and properties of Asian (Pyrus serotina Rehd.) and European (Pyrus communis L.) pear cultivars. Hortic Environ Biotechnol 49:244–252

    CAS  Google Scholar 

  46. Rizzolo A, Lombardi P, Vanoli M, Polesello S (1995) Use of capillary gas chromatography/sensory analysis as an additional tool for sampling technique comparison in peach aroma analysis. J High Resolut Chromatogr 18(5):309–314

    Article  CAS  Google Scholar 

  47. Harren FJ, Cristescu SM (2013) Online, real-time detection of volatile emissions from plant tissue. AoB Plants 5:plt003

    Article  Google Scholar 

  48. Lanza M, Acton WJ, Sulzer P, Breiev K, Jürschik S, Jordan A, Hartungen E, Hanel G, Märk L, Märk TD, Mayhew CA (2015) Selective reagent ionisation-time of flight-mass spectrometry: a rapid technology for the novel analysis of blends of new psychoactive substances. J Mass Spectrom 50(2):427–431

    Article  CAS  Google Scholar 

  49. Buhr K, van Ruth S, Delahunty C (2002) Analysis of volatile flavour compounds by proton-transfer reaction mass spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. Int J Mass Spectrom 221:1–7

    Article  CAS  Google Scholar 

  50. Tani A, Hayward S, Hewitta CN (2003) Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int J Mass Spectrom 223:561–578

    Article  Google Scholar 

  51. Maleknia SD, Bell TL, Adams MA (2007) PTR-MS analysis of reference and plant-emitted volatile organic compounds. Int J Mass Spectrom 262:203–210

    Article  CAS  Google Scholar 

  52. Kim S, Karl T, Helmig D, Daly R, Rasmussen R, Guenther A (2009) Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS). Atmos Meas Tech 2:99–112

    Article  CAS  Google Scholar 

  53. El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J (2013) Advances in fruit aroma volatile research. Molecules 18(7):8200–8229

    Article  Google Scholar 

  54. Berger RG (1991) In: Maarse H (ed) Volatile compounds foods and beverages. Marcel Dekker Inc, New York

    Google Scholar 

  55. Rudell DR, Mattinson DS, Mattheis JP, Wyllie SG, Fellman JK (2002) Investigations of aroma volatile biosynthesis under anoxic conditions and in different tissues of “Redchief Delicious” apple fruit (Malus domestica Borkh.). J Agric Food Chem 50:2627–2632

    Article  CAS  Google Scholar 

  56. Chervin C, Speirs J, Loveys B, Patterson BD (2000) Influence of low oxygen storage on aroma compounds of whole pears and crushed pear flesh. Postharvest Biol Technol 19(3):279–285

    Article  CAS  Google Scholar 

  57. Baietto M, Wilson AD (2015) Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors 15(1):899–931

    Article  CAS  Google Scholar 

  58. Qin G, Tao S, Zhang H, Huang W, Wu J, Xu Y, Zhang S (2014) Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors. Molecules 19(12):20183–20196

    Article  Google Scholar 

  59. Song J, Bangerth F (2003) Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol Technol 30:113–121

    Article  CAS  Google Scholar 

  60. Tan SC (2000) Determinants of eating quality in fruit and vegetables. Proc Nutr Soc Aust 24:183–190

    Google Scholar 

  61. Ernst S, Batte MT, Darby K, Worley T (2006) What matters in consumer berry preferences: price? Source? Quality? J Food Distrib Res 37(1):68–71

    Google Scholar 

  62. Farneti B, Khomenko I, Cappellin L, Ting V, Romano A, Biasioli F, Costa G, Costa F (2015) Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics 11(4):838–850

    Article  CAS  Google Scholar 

  63. Kahle K, Preston C, Richling E, Heckel F, Schreier P (2005) On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of major volatiles from pear fruit (Pyrus communis) and pear products. Food Chem 91(3):449–455

    Article  CAS  Google Scholar 

  64. Willner B, Granvogl M, Schieberle P (2013) Characterization of the key aroma compounds in Bartlett pear brandies by means of the sensomics concept. J Agric Food Chem 61(40):9583–9593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by funds of the Regione Toscana ‘‘PRAF 2012-2015 MISURA 1.2 e)’’ program (call “Agrifood”, Project VOLATOSCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elettra Marone.

Ethics declarations

Conflict of interest

We confirm that we do not have any conflict of interest.

Human/animal rights

This article does not contain any studies with human or animal subjects.

Informed consent

This article does not requires any informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taiti, C., Marone, E., Lanza, M. et al. Nashi or Williams pear fruits? Use of volatile organic compounds, physicochemical parameters, and sensory evaluation to understand the consumer’s preference. Eur Food Res Technol 243, 1917–1931 (2017). https://doi.org/10.1007/s00217-017-2898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2898-y

Keywords

Navigation