Skip to main content
Log in

Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation

  • Short Communication
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The application of natural colorants in food products has been gained more and more attention, not only due to their nutritional advantages, but also their functional properties. The purpose of this research was to encapsulate capsanthin from paprika by nanoemulsions (NEs), and the stability of resultant NEs was evaluated. The NE systems were first optimized by dropwise adding mixed organic phase [5 wt% medium-chain triglyceride (MCT) and 10 wt% surfactant containing span 20 and tween 80 with the weight ratio 1:3 and HLB 13.4] into water phase. Then capsanthin was mixed with MCT as the oil phase. With the presence of capsanthin, the oil phase composition had great impact on the particle size of NEs that the droplet size increased from 30 to 150 nm with increasing capsanthin content. Generally, higher temperature and stirring speed would decrease the particle size, which also depended on the surfactant-to-oil ratio. The stability results demonstrated that there was no obvious change on the capsanthin NE droplet size and entrapped capsanthin content after 1 month storage at ambient temperature. Our results are important for the design of food-grade delivery systems to encapsulate natural lipophilic pigments or ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Suzuki K, Mori M, Ishikawa K, Takizawa K, Nunomura O (2007) Carotenoid composition in mature Capsicum annuum. Food Sci Technol Res 13(1):77–80

    Article  CAS  Google Scholar 

  2. Liang R, Shoemaker CF, Yang X, Zhong F, Huang Q (2013) Stability and bioaccessibility of beta-carotene in nanoemulsions stabilized by modified starches. J Agric Food Chem 61(6):1249–1257

    Article  CAS  Google Scholar 

  3. Matsufuji H, Nakamura H, Chino M, Takeda M (1998) Antioxidant activity of capsanthin and the fatty acid esters in paprika (Capsicum annuum). J Agric Food Chem 46(9):3468–3472

    Article  CAS  Google Scholar 

  4. Requena A, Cerón-Carrasco JP, Bastida A, Zúñiga J, Miguel B (2008) A density functional theory study of the structure and vibrational spectra of β-carotene, capsanthin, and capsorubin. J Phys Chem A 112:4815–4825

    Article  CAS  Google Scholar 

  5. Kim S, Ha TY, Hwang IK (2009) Analysis, bioavailability, and potential healthy effects of capsanthin, natural red pigment from Capsicum spp. Food Rev Int 25(3):198–213

    Article  CAS  Google Scholar 

  6. Maoka T, Goto Y, Isobe K, Fujiwara Y, Hashimote K, Mochida K (2001) Antioxidative activity of capsorubin and related compounds from paprika (Capsicum annuum). J Oleo Sci 50(8):663–665

    Article  CAS  Google Scholar 

  7. Xiao JX, Huang GQ, Wang SQ, Sun YT (2014) Microencapsulation of capsanthin by soybean protein isolate-chitosan coacervation and microcapsule stability evaluation. J Appl Polym Sci 131(1):39671

    Article  Google Scholar 

  8. Li Y, Le Maux S, Xiao H, McClements DJ (2009) Emulsion-based delivery systems for tributyrin, a potential colon cancer preventative agent. J Agric Food Chem 57(19):9243–9249

    Article  CAS  Google Scholar 

  9. Yoo JH, Shanmugam S, Thapa P, Lee ES, Balakrishnan P, Baskaran R, Yoon S-K, Choi H-G, Yong CS, Yoo BK (2010) Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch Pharmacal Res 33(3):417–426

    Article  CAS  Google Scholar 

  10. McClements DJ (2010) Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol 1:241–269

    Article  CAS  Google Scholar 

  11. McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7(6):2297–2316

    Article  CAS  Google Scholar 

  12. Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58(3):173–182

    Article  Google Scholar 

  13. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid In 13(4):245–251

    Article  Google Scholar 

  14. Li Y, Xiao H, McClements DJ (2012) Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: factors affecting polymethocyflavone solubility. Food Biophys 7(4):341–353

    Article  Google Scholar 

  15. An HZ, Helgeson ME, Doyle PS (2012) Nanoemulsion composite microgels for orthogonal encapsulation and release. Adv Mater 24(28):3838–3844 3895

    Article  CAS  Google Scholar 

  16. Qian C, Decker EA, Xiao H, McClements DJ (2012) Inhibition of beta-carotene degradation in oil-in-water nanoemulsions: influence of oil-soluble and water-soluble antioxidants. Food Chem 135(3):1036–1043

    Article  CAS  Google Scholar 

  17. Fryd MM, Mason TG (2012) Advanced nanoemulsions. Annu Rev Phys Chem 63:493–518

    Article  CAS  Google Scholar 

  18. Solè I, Maestro A, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 22(20):8326–8332

    Article  Google Scholar 

  19. Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28(5):978–985

    Article  CAS  Google Scholar 

  20. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Article  Google Scholar 

  21. Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J (2012) Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Del 9(5):585–598

    Article  CAS  Google Scholar 

  22. Piorkowski DT, McClements DJ (2013) Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocoll 1–37. doi:10.1016/j.foodhyd.2013.07.009

  23. Gharibzahedi SM, Razavi SH, Mousavi SM (2013) Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by arabic and xanthan gums. Carbohydr Polym 96(1):21–30

    Article  CAS  Google Scholar 

  24. Nazarzadeh E, Anthonypillai T, Sajjadi S (2013) On the growth mechanisms of nanoemulsions. J Colloid Interface Sci 397:154–162

    Article  CAS  Google Scholar 

  25. Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25(5):1000–1008

    Article  CAS  Google Scholar 

  26. Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377(1–2):142–147

    Article  CAS  Google Scholar 

  27. Date AA, Desai N, Dixit R, Nagarsenker M (2010) Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine 5(10):1595–1616

    Article  CAS  Google Scholar 

  28. Kini GC, Biswal SL, Wong MS, Miller CA (2012) Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems. J Colloid Interface Sci 385:111–121

    Article  CAS  Google Scholar 

  29. Saberi AH, Fang Y, McClements DJ (2013) Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci 391:95–102

    Article  CAS  Google Scholar 

  30. Solans C, Sole I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid In 17(5):246–254

    Article  CAS  Google Scholar 

  31. Porras M, Solans C, González C, Gutiérrez JM (2008) Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surf. Physicochem Eng Aspects 324(1–3):181–188

    Article  CAS  Google Scholar 

  32. Yang Y, Marshall-Breton C, Leser ME, Sher AA, McClements DJ (2012) Fabrication of ultrafine edible emulsions: comparison of high-energy and low-energy homogenization methods. Food Hydrocoll 29(2):398–406

    Article  CAS  Google Scholar 

  33. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22(7):1191–1202

    Article  CAS  Google Scholar 

  34. Troncoso E, Aguilera JM, McClements DJ (2012) Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocoll 27(2):355–363

    Article  CAS  Google Scholar 

  35. Salvia-Trujillo L, Qian C, Martin-Belloso O, McClements DJ (2013) Influence of particle size on lipid digestion and beta-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem 141(2):1472–1480

    Article  CAS  Google Scholar 

  36. Bouchemal K, Briancon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 280(1–2):241–251

    Article  CAS  Google Scholar 

  37. Wang L, Dong J, Chen J, Eastoe J, Li X (2009) Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci 330(2):443–448

    Article  CAS  Google Scholar 

  38. Rao J, McClements DJ (2012) Food-grade microemulsions and nanoemulsions: role of oil phase composition on formation and stability. Food Hydrocoll 29(2):326–334

    Article  CAS  Google Scholar 

  39. McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606

    Article  CAS  Google Scholar 

  40. Schmidts T, Dobler D, Guldan AC, Paulus N, Runkel F (2010) Multiple W/O/W emulsions—Using the required HLB for emulsifier evaluation. Colloids Surf Physicochem Eng Aspects 372(1–3):48–54

    Article  CAS  Google Scholar 

  41. Matsaridou I, Barmpalexis P, Salis A, Nikolakakis I (2012) The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution. AAPS PharmSciTech 13(4):1319–1330

    Article  CAS  Google Scholar 

  42. Narang AS, Delmarre D, Gao D (2007) Stable drug encapsulation in micelles and microemulsions. Int J Pharm 345(1–2):9–25

    Article  CAS  Google Scholar 

  43. Ziani K, Fang Y, McClements DJ (2012) Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem 134(2):1106–1112

    Article  CAS  Google Scholar 

  44. Kommuru T, Gurley B, Khan M, Reddy I (2001) Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212(2):233–246

    Article  CAS  Google Scholar 

  45. Pons R (2003) Formation and properties of miniemulsions formed by microemulsions dilution. Adv Colloid Interface Sci 106(1–3):129–146

    Article  CAS  Google Scholar 

  46. Koroleva MY, Yurtov EV (2012) Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev 81(1):21–43

    Article  CAS  Google Scholar 

  47. Rao J, McClements DJ (2010) Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J Agric Food Chem 58(11):7059–7066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Project 2013QC031 supported by the Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China (No. 31371841).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Yan, X., Li, B. et al. Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation. Eur Food Res Technol 239, 1077–1085 (2014). https://doi.org/10.1007/s00217-014-2328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2328-3

Keywords

Navigation