Skip to main content
Log in

Treatment of slices from carrot (Daucus carota) using high intensity white pulsed light

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Experiments with washing of carrot slices using distilled water and 0.9% (w/w) NaCl in combination with varying number and pulses of high intensity white were carried out. Slices of carrot 3.5 cm in diameter and 2 mm thick were inoculated using diluted dispersions of yeasts (Saccharomyces cerevisiae) for varying time (0–240 min) and then the slices were treated with high intensity pulsed white light (one pulse = 0.7 J/cm2) using from none to 24 pulses. The major part of the yeast cells were killed using two pulses of light. The studies included washing of inoculated slices up to five times using salt 0.9% (w/w) NaCl and distilled water and inoculation at 22 °C for between 5 and 120 min. It was concluded that treatment of carrot slices with high intensity white light may reduce the load of yeast cells with up to 6 log cycles. Inoculation time at 22 °C had no effect on the maximum load of yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Barry-Ryan C, O’Beirne D (1998) J Food Sci 63:851–856

    Article  CAS  Google Scholar 

  2. Barry RC, O’Beirne D (2000) Advances in the refrigeration systems, food technologies and cold chain. Sofia, Bulgaria, 23–26 September 1998, pp 417–424

  3. Amanatidou A, Smid EJ, Gorris L-GM (1999) J Appl Microbiol 86:429–438

    Article  CAS  Google Scholar 

  4. Nguyen-The C, Carlin F (1994) Crit Rev Food Sci Nutr 34:371–401

    Article  CAS  Google Scholar 

  5. Sommer R, Lhotsky M, Haider T, Cabaj A (2000) J Food Prot 63:1015–1020

    CAS  Google Scholar 

  6. Carlin F, Nguyen TC, Chambroy Y, Reich M (1990) Int J Food Sci Technol 25:110–119

    Google Scholar 

  7. Emmambux NM, Minnaar A (2003) J Sci Food Agric 83:1065–1071

    Article  CAS  Google Scholar 

  8. Dunn J, Ott T, Clark W (1995) Food Technol Chicago 49:95–98

    Google Scholar 

  9. Dunn J, Bushnell A, Ott T, Clark W (1997) Cereal Foods World 42:510–515

    Google Scholar 

  10. Huffman DE, Slifko TR, Salisbury K, Rose JB (2000) Water Research Oxford 34:2491–2498

    Article  CAS  Google Scholar 

  11. Carlin F, Nguyen-The C, Cudennec P, Reich M (1989) Sci Alim 9:371–386

    Google Scholar 

  12. Holzapfel WH (2004) Lett Appl Microbiol 22:662–667-669

    Google Scholar 

  13. Tauxe R, Kruse H, Hedberg C, Potter M, Madden J, Wachsmuth K (1997) J Food Prot 60:1400–1408

    Google Scholar 

  14. Wells JM, Butterfield JE (1997) Plant Dis 81:867–872

    Google Scholar 

  15. Takeshita K, Shibato J, Sameshima T, Fukunaga S, Isobe S, Arihara K, Itoh M (2003) Int J Food Microbiol 85:151–158

    Article  Google Scholar 

  16. Manvell C (1997) Food Sci Technol Today 11:107–111

    Google Scholar 

  17. Deeth HC, Datta N (2002) Food Aust 54:273–277

    Google Scholar 

  18. Beuchat LR, Brackett RE (1990) Appl Environ Microbiol 56:1734–1742

    CAS  Google Scholar 

  19. Samson RA, Hoekstra ES, Lund F, Filtenborg O, Frisvad JC (2002) Methods for the detection, isolation and characterization of food-borne fungi. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food- and airborne fungi: Central bureau voor Schimmelcultures, Utrecht, The Netherlands pp 283–297

  20. Torriani S, Massa S (1994) Lebensm-Wiss Technol 27:487–490

    Article  Google Scholar 

  21. Simons LK, Sanguansri P (1997) Food Aust 49:75–80

    Google Scholar 

  22. Sinigaglia M, Albenzio M, Corbo MR (1999) J Ind Microbiol Biotechnol 23:484–488

    Article  CAS  Google Scholar 

  23. MacGregor SJ, Rowan NJ, McIlvaney L, Anderson JG, Fouracre RA, Farish O (1998) Lett Appl Microbiol 27:67–70

    Article  CAS  Google Scholar 

  24. Zhou WL, Gao DX, Xiao XY (1998) Food Sci China 19:16–19

    Google Scholar 

  25. Liao C, Cooke PH (2001) Can J Microbiol 47:25–32

    Article  CAS  Google Scholar 

  26. Liao CH, Sapers GM (2000) J Food Prot Des Moines, Iowa: Int Assoc Milk, Food Environ Sanitarians 63:876–883

    CAS  Google Scholar 

  27. Zottola EA, Sasahara KC (1994) Int J Food Microbiol 23:125–148

    Article  CAS  Google Scholar 

  28. Kumar CG, Anand SK (1998) Int J Food Microbiol 42:9–27

    Article  CAS  Google Scholar 

  29. Marshall KC, Stout RMR (1971) J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  30. Baker JH (2005) Can J Microbiol 30:511–515

    Google Scholar 

  31. Buchanan RL, Doyle MP (1997) Food Technol 51:69–76

    Google Scholar 

  32. Sutherland IW (1983) Crit Rev Microbiol 10:173–201

    CAS  Google Scholar 

  33. Stanley PM (1983) Can J Microbiol 29:1493–1499

    Article  CAS  Google Scholar 

  34. Mittelman MW (1998) J Dairy Sci 81:2760–2764

    Article  CAS  Google Scholar 

  35. Garrood MJ, Wilson P-DG, Brocklehurst TF (2004) Appl Environ Microbiol 70:3558–3565

    Article  CAS  Google Scholar 

  36. Berg HE, Boxtel L-BJ, Dutreux N, Wijtzes T (1999) Voedingsmiddelentechnologie 32:11–12

    Google Scholar 

  37. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, McIlvaney L, Farish O (1999) Appl Environ Microbiol 65:1312–1315

    CAS  Google Scholar 

  38. Babic I, Hilbert G, Nguyen-The C, Guiraud J (1992) Int J Food Sci Technol 27:473–484

    Google Scholar 

  39. Odumeru JA, Mitchell SJ, Alves DM, Lynch JA, Yee AJ, Wang SL, Styliadis S, Farber JM (1997) J Food Protect 60:954–960

    Google Scholar 

  40. Barry-Ryan C, O’Beirne D (1998) J Food Sci 63:851–856

    Article  CAS  Google Scholar 

  41. Rice J (1994) Food Process 55:66

    Google Scholar 

  42. Hao YY, Brackett RE, Beuchat LR, Doyle MP (1999) J Food Protect 62:499–508

    CAS  Google Scholar 

  43. Odumeru J, Mitchell S, Alves D, Lynch J, Yee A, Wang S, Styliadis S, Farber J (1997) J Food Protect 60:954–960

    Google Scholar 

  44. Amanatidou A, Slump RA, Gorris L-GM, Smid EJ (2000) J Food Sci 65:61–66

    Article  CAS  Google Scholar 

  45. Opatova H, Sevcik R, Dufkova M, Prodelal R, Oosterhaven J, Peppelenbos HW (2002) Proceedings of the 8th international conference on Atm Res Conf., Rotterdam 600:599–602

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kaack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaack, K., Lyager, B. Treatment of slices from carrot (Daucus carota) using high intensity white pulsed light. Eur Food Res Technol 224, 561–566 (2007). https://doi.org/10.1007/s00217-006-0332-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0332-y

Keywords

Navigation