Skip to main content
Log in

A fluorescent artificial receptor with specific imprinted cavities to selectively detect colistin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel and facile fluorescent artificial receptor on the basis of the molecularly imprinted polymer-coated graphene quantum dots was engineered successfully to detect colistin. The colistin imprinted graphene quantum dots (CMIP-GQDs) was synthesized by vinyl-based radical polymerization between functional monomers and crosslinker at around the template molecule on the surface of graphene quantum dots. The size of bare, CNIP-GQDs, and CMIP-GQDs was about 4.8 ± 0.6 nm, 18.4 ± 1.7 nm, and 19.7 ± 1.3 nm, respectively. The CMIP-GQDs, which showed the strong fluorescence emission at 440 nm with the excitation wavelength fixed at 380 nm, had excellent selectivity and specificity to rapidly recognize and detect colistin. The linear range of fluorescence quenching of this fluorescent artificial receptor for detection colistin was 0.016–2.0 μg mL−1 with a correlation coefficient (R2) of 0.99919, and the detection limit was 7.3 ng mL−1 in human serum samples. The designed receptor was successfully applied to detect colistin in human serum samples and it achieved excellent recoveries shifted from 93.8 to 105%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ma Z, Wang J, Nation RL, Li J, Turnidge JD, Coulthard K, et al. Renal disposition of colisitin in the isolated perfused rat kidney. Antimicrob Agents Chemother. 2009;53:2857–64. https://doi.org/10.1128/AAC.00030-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:1953–8. https://doi.org/10.1128/AAC.00035-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, et al. Incidence of and risk factors for colistin- associated nephrotoxicity in a large academic health system. Clin Infect Dis. 2011;53:879–84. https://doi.org/10.1093/cid/cir611.

    Article  PubMed  CAS  Google Scholar 

  4. Yousef JM, Chen G, Hill PA, Nation RL, Li J. Ascorbic acid protectts against the nephrotoxicity and apoptosis caused by colistin and affects its pharmokinetics. J Antimicrob Chemother. 2012;67:452–9. https://doi.org/10.1093/jac/dkr483.

    Article  PubMed  CAS  Google Scholar 

  5. Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64:565–71. https://doi.org/10.1093/cid/ciw839.

    Article  PubMed  CAS  Google Scholar 

  6. Antachopoulos C, Karvanen M, Iosifidis E, Jansson B, Plachouras D, Cars O, et al. Serum and cerebrospinal fluid levels of colistin. Antimicrob Agents Chemother. 2010;54:3985–7. https://doi.org/10.1128/AAC.01799-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M. Molecular mechanisms of colistin-induced nephrotoxicity. Molecules. 2019;24:653–66. https://doi.org/10.3390/molecules24030653.

    Article  PubMed Central  CAS  Google Scholar 

  8. Turan E, Şahin F. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sens Actuators B Chem. 2016;227:668–76. https://doi.org/10.1016/j.snb.2015.12.087.

    Article  CAS  Google Scholar 

  9. Scheller FW, Zhang X, Yarman A, Wollenberg U, Gyurcsanyi RE. Molecularly imprinted polymer-based electrochemical sensors for biopolymers. Curr Opin Electrochem. 2019;14:53–9. https://doi.org/10.1016/j.coelec.2018.12.005.

    Article  CAS  Google Scholar 

  10. Turan E. His-tag-epitope imprinted thermoresponsive magnetic nanoparticles for recognition and separation thyroid peroxidase antigens from whole blood samples. ChemSelect. 2018;3:11963–9. https://doi.org/10.1002/slct.201801557.

    Article  CAS  Google Scholar 

  11. BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171.

    Article  PubMed  CAS  Google Scholar 

  12. Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47:5574–87. https://doi.org/10.1039/c7cs000854f.

    Article  PubMed  CAS  Google Scholar 

  13. Choi JR, Yong YW, Choi JY, Cowie AC. Progress in molecularly imprinted polymers for biomedical applications. Comb Chem High Throughput Screen. 2019;22:78–88. https://doi.org/10.2174/1386207322666190325115526.

    Article  PubMed  CAS  Google Scholar 

  14. Xu J, Miao H, Wang J, Pan G. Molecularly imprinted synthetic antibodies: from chemical design to biomedical applications. NANO MICRO Small. 2020;1906644:1–21. https://doi.org/10.1002/smll.201906644.

    Article  CAS  Google Scholar 

  15. Ensafi AA, Zakery M, Rezai B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based ZnO-QDs coated with molecularly imprinted polymer. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:460–5. https://doi.org/10.1016/j.saa.2018.08.040.

    Article  PubMed  CAS  Google Scholar 

  16. Yan YY, He XW, Li WY, Zhang YK. Nitrogen-doped graphene quantum dots-labeled epitope imprinted polymer with double templates via the metal chelation for specific recognition of cytochrome c. Biosens Bioelectron. 2017;91:253–61. https://doi.org/10.1016/j.bios.2016.12.040.

    Article  PubMed  CAS  Google Scholar 

  17. Khataee A, Hassanzadeh J, Kohen E. Specific quantification of atropine using molecularly imprinted polymer on graphene quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2018;205:614–21. https://doi.org/10.1016/j.saa.2018.07.088.

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Cao N, Gui W, Ma Q. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection. Talanta. 2018;183:339–44. https://doi.org/10.1016/j.talanta.2018.01.063.

    Article  PubMed  CAS  Google Scholar 

  19. Toloza CAT, Almeida JMS, Khan S, dos Santos YG, da Silva AR, Aucelio RQ. Kanamycin detection at graphene quantum dot-decorated gold nanoparticles in organized medium after solid-phase extraction using an aminoglycoside imprinted polymer. MethodsX. 2018;5:1605–12. https://doi.org/10.1016/j.mex.2018.11.019.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chullasat K, Kanatharana P, Bunkoed O. Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone. Sens Actuators B Chem. 2019;281:689–97. https://doi.org/10.1016/j.snb.2018.11.003.

    Article  CAS  Google Scholar 

  21. Mehrzad-Samarin M, Faridbod F, Ganjali MR. A luminescence nanosensor for ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:430–6. https://doi.org/10.1016/j.saa.2018.08.026.

    Article  PubMed  CAS  Google Scholar 

  22. Li Y, Tang S, Zhang W, Cui X, Zhang Y, Jin Y, et al. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk. Sens Actuators B Chem. 2019;282:703–11. https://doi.org/10.1016/j.snb.2018.11.050.

    Article  CAS  Google Scholar 

  23. Suhren G, Knappstein K. Detection of colistin in spiked and incurred milk samples by LC- and ELISA-technique. Anal Chim Acta. 2005;529:97–101. https://doi.org/10.1016/j.aca.2004.09.030.

    Article  CAS  Google Scholar 

  24. Yuphintharakum N, Nurerk P, Chullasat K, Kanatharana P, Davis F, Sooksawat D, et al. A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin. Spectrochim Acta A Mol Biomol Spectrosc. 2018;201:382–91. https://doi.org/10.1016/j.saa.2018.05.034.

    Article  CAS  Google Scholar 

  25. Zhang L, Chen L. Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl Mater Interfaces. 2016;8:16248–56. https://doi.org/10.1021/acsami.6b04381.

    Article  PubMed  CAS  Google Scholar 

  26. Lu X, Wei F, Xu G, Wu Y, Yang J, Hu Q. Surface molecular imprinting on silica coated CdTe quantum dots for selective and sensitive fluorescence detection of p-aminophenol in water. J Fluoresc. 2017;27:181–9. https://doi.org/10.1007/s10895-016-1944-7.

    Article  PubMed  CAS  Google Scholar 

  27. Gao T, Wang X, Yang LY, He H, Ba XX, Zhao J, et al. Red, yellow, and blue luminescence by graphene quantum dots: synthesis, mechanism, and cellular imaging. ACS Appl Mater Interfaces. 2017;9:24846–56. https://doi.org/10.1021/acsami.7b05569.

    Article  PubMed  CAS  Google Scholar 

  28. Xiao Y, Xiao R, Tang J, Zhu Q, Li X, Xiong Y, et al. Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I. Talanta. 2017;162:415–22. https://doi.org/10.1016/j.talanta.2016.10.014.

    Article  PubMed  CAS  Google Scholar 

  29. Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O. A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin. Sens Actuators B Chem. 2018;254:255–63. https://doi.org/10.1016/j.snb.2017.07.062.

    Article  CAS  Google Scholar 

  30. Zhou Z, Li T, Xu W, Huang W, Wang N, Yang W. Synthesis and charazterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples. Sens Actuators B Chem. 2017;204:1114–22. https://doi.org/10.1016/j.snb.2016.09.092.

    Article  CAS  Google Scholar 

  31. Geng S, Lin SM, Li NB, Luo HQ. Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper (II) ion. Sens Actuators B Chem. 2017;253:137–43. https://doi.org/10.1016/j.snb.2017.06.118.

    Article  CAS  Google Scholar 

  32. Ren X, Chen L. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem. 2015;407:8087–95. https://doi.org/10.1007/s00216-015-8982-x.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang L, Chen L. Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchim Acta. 2018;185:135–43. https://doi.org/10.1007/s00604-017-2664-7.

    Article  CAS  Google Scholar 

  34. Orachorn N, Bunkoed O. A nanocomposite fluorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefloxacin detection. Talanta. 2019;203:261–8. https://doi.org/10.1016/j.talanta.2019.05.082.

    Article  PubMed  CAS  Google Scholar 

  35. Raksawong P, Nurerk P, Chullasat K, Kanatharana P, Bunkoed O. A polypyrolle doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim Acta. 2019;186:1–8. https://doi.org/10.1007/s00604-019-3447-0.

    Article  CAS  Google Scholar 

  36. Ahmadpour H, Hosseini SMM. A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples. Talanta. 2019;194:534–41. https://doi.org/10.1016/j.talanta.2018.10.053.

    Article  PubMed  CAS  Google Scholar 

  37. Chepyala D, Tsai IL, Sun HY, Lin SW, Kuo CH. Development and validation of a high-performance liquid chromatography-fluorescence detection method for the accurate qantification of colistin in human plasma. J Chromatogr B. 2015;980:48–54. https://doi.org/10.1016/j.jchromb.2014.12.015.

    Article  CAS  Google Scholar 

  38. Cangemi G, Barco S, Castagnola E, Tripodi G, Favata F. Development and validation of UHPLC-MS/MS methods for the quantification of colistin in plasma and dried plasma spots. J Pharm Biomed Anal. 2016;129:551–7. https://doi.org/10.1016/j.jpba.2016.08.002.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao M, Wu XJ, Fan YX, Guo BN, Zhang J. Development and validation of a UHPLC-MS/MS assay for colistin methanesulphonate (CMS) and colistin in human plasma and urine using weak-cation exchange solid-phase extraction. J Pharm Biomed Anal. 2016;124:303–8. https://doi.org/10.1016/j.jpba.2016.02.045.

    Article  PubMed  CAS  Google Scholar 

  40. Boison JO, Lee S, Matus J. A multi residue method for the determination of seven polypeptide drug residues in chicken muscle tissues by LC-MS/MS. Anal Bioanal Chem. 2015;407:4065–78. https://doi.org/10.1007/s00216-015-8644-z.

    Article  PubMed  CAS  Google Scholar 

  41. Gobin P, Lemaitre F, Marchand S, Couet W, Olivier JC. Assay of colistin and colistin methanesulfonate in plasma and urine by liquid chromatography-tandem mass spectrometry. Antimicrob Agents Chemother. 2010;54:1941–8. https://doi.org/10.1128/AAC.01367-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Turan.

Ethics declarations

All procedures performed in studies involving human participants were approved by Istanbul Medipol University Non-invasive Clinical Research Ethics Committee, Turkey, and in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, E., Zengin, A. A fluorescent artificial receptor with specific imprinted cavities to selectively detect colistin. Anal Bioanal Chem 412, 7417–7428 (2020). https://doi.org/10.1007/s00216-020-02873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02873-5

Keywords

Navigation