Skip to main content
Log in

Magnetically separable and recyclable bamboo-like carbon nanotube–based FRET assay for sensitive and selective detection of Hg2+

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The global occurrence of toxic hazards in aquatic ecosystems has aroused concern about the potential impacts on the ecological environment and human health in recent decades. Mercury(II) ions that originate from widespread sources including the mining industry, fossil fuel consumption, and industrial wastes are now well known as a highly toxic pollutant. Despite various detection methods which have been reported to sense Hg2+, it still poses a great challenge for us to develop a new effective sensing platform to replenish current fluorescent detection techniques. Here, we report a novel fluorescent biosensor using bamboo-like magnetic carbon nanotubes (BMCNTs) and FAM-labeled T-rich ssDNA for efficient detection of Hg2+ in aqueous solution. The proposed biosensor shows a good response toward Hg2+ detection over a linear response range of 0.05~1 μM (R2 = 0.98) with a detection limit of 20 nM. It also exhibits the capability to discriminate Hg2+ ions with negligible response to other metal ions, such as Ca2+, Cd2+, Cu2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+. Interestingly, the BMCNTs could be separated and recycled easily by using an external magnet, which means a much more cost-effective, easy-to-operate, and eco-friendly method for Hg2+ ion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bi S, Ji B, Zhang Z, Zhu J-J. Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem Sci. 2013;4:1858–63.

    CAS  Google Scholar 

  2. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra RP. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc. 2008;130:8038–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, et al. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore. J Am Chem Soc. 2011;133:18312–7.

    CAS  PubMed  Google Scholar 

  4. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev. 2012;41:3210–44.

    CAS  PubMed  Google Scholar 

  5. Bazzicalupi C, Caltagirone C, Cao Z, Chen Q, Di Natale C, Garau A, et al. Multimodal use of new coumarin-based fluorescent chemosensors: towards highly selective optical sensors for Hg2+ probing. Chem - A Eur J. 2013;19:14639–53.

    CAS  Google Scholar 

  6. Lin ZH, Zhu G, Zhou YS, Yang Y, Bai P, Chen J, et al. A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Ed. 2013;52:5065–9.

    CAS  Google Scholar 

  7. Yuan C-G, Lin K, Chang A. Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction. Microchim Acta. 2010;171:313–9.

    CAS  Google Scholar 

  8. Yuan Y, Jiang S, Miao Q, Zhang J, Wang M, An L, et al. Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and a simple device for its removal. Talanta. 2014;125:204–9.

    CAS  PubMed  Google Scholar 

  9. Chen G, Guo Z, Zeng G, Tang L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst. 2015;140:5400–43.

    CAS  PubMed  Google Scholar 

  10. Nolan EM, Lippard SJ. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc. 2007;129:5910–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen P, He C. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J Am Chem Soc. 2004;126:728–9.

    CAS  PubMed  Google Scholar 

  12. Kim E, Seo S, Seo ML, Jung JH. Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing. Analyst. 2010;135:149–56.

    CAS  PubMed  Google Scholar 

  13. Du Y, Liu R, Liu B, Wang S, Han M-Y, Zhang Z. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Anal Chem. 2013;85:3160–5.

    CAS  PubMed  Google Scholar 

  14. Lu C, Jimmy Huang PJ, Ying Y, Liu J. Covalent linking DNA to graphene oxide and its comparison with physisorbed probes for Hg2+ detection. Biosens Bioelectron. 2016;79:244–50.

    CAS  PubMed  Google Scholar 

  15. Wang P, Zhong R-B, Yuan M, Gong P, Zhao X-M, Zhang F. Mercury (II) detection by water-soluble photoluminescent ultra-small carbon dots synthesized from cherry tomatoes. Nucl Sci Tech. 2016;27:35.

    Google Scholar 

  16. Wang H, Liu Y, Liu G. Electrochemical biosensor using DNA embedded phosphorothioate modified RNA for mercury ion determination. ACS Sensors. 2018;3:624–31.

    PubMed  Google Scholar 

  17. Zhang L, Li T, Li B, Li J, Wang E. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(ii) ion. Chem Commun. 2010;46:1476–8.

    CAS  Google Scholar 

  18. Sadhukhan M, Barman S. Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions. J Mater Chem A. 2013;1:2752–6.

    CAS  Google Scholar 

  19. Bottini M, Mustelin T. Carbon materials: nanosynthesis by candlelight. Nat Nanotechnol. 2007;2:599.

    CAS  PubMed  Google Scholar 

  20. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.

    CAS  Google Scholar 

  21. Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev. 2017;46:158–96.

    CAS  PubMed  Google Scholar 

  22. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci. 2018;64:219–53.

    Google Scholar 

  23. Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev. 2019;119(16):9559–656.

    CAS  PubMed  Google Scholar 

  24. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, et al. Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod. 2019;230:783–93.

    CAS  Google Scholar 

  25. Girishkumar G, Vinodgopal K, Kamat PV. Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B. 2004;108:19960–6.

    CAS  Google Scholar 

  26. Kim TH, Lee J, Hong S. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C. 2009;113:19393–6.

    CAS  Google Scholar 

  27. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc. 1994;116:7935–6.

    CAS  Google Scholar 

  28. Mohamed RM, Abdel Salam M. Photocatalytic reduction of aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite. Mater Res Bull. 2014;50:85–90.

    CAS  Google Scholar 

  29. Ouyang R, Zhu Z, Tatum CE, Chambers JQ, Xue Z-L. Simultaneous stripping detection of Zn(II), Cd(II) and Pb(II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J Electroanal Chem. 2011;656:78–84.

    CAS  Google Scholar 

  30. He L-L, Cheng L, Lin Y, Cui H-F, Hong N, Peng H, et al. A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. J Electroanal Chem. 2018;814:161–7.

    CAS  Google Scholar 

  31. Wu L-L, Wang Z, Zhao S-N, Meng X, Song X-Z, Feng J, et al. A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem – A Eur J. 2016;22:477–80.

    CAS  Google Scholar 

  32. Ge F, Li M-M, Ye H, Zhao B-X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater. 2012;211–212:366–72.

    PubMed  Google Scholar 

  33. Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, et al. Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun. 2012;48:7350–2.

    CAS  Google Scholar 

  34. Malik R, Goyal A, Yadav S, Gupta N, Goel N, Kaushik A, et al. Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: comprehensive experimental cum computational investigations. J Hazard Mater. 2019;364:621–34.

    CAS  PubMed  Google Scholar 

  35. Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl Surf Sci. 2020;506:144924.

    Google Scholar 

  36. Deck CP, Vecchio K. Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon. 2006;44:267–75.

    CAS  Google Scholar 

  37. Lin M, Tan JPY, Boothroyd C, Loh KP, Tok ES, Foo Y-L. Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 2007;7:2234–8.

    CAS  PubMed  Google Scholar 

  38. Song R, Jiang Z, Bi W, Cheng W, Lu J, Huang B, et al. The combined catalytic action of solid acids with nickel for the transformation of polypropylene into carbon nanotubes by pyrolysis. Chem – A Eur J. 2007;13:3234–40.

    CAS  Google Scholar 

  39. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, et al. Fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron. 2015;63:506–12.

    CAS  PubMed  Google Scholar 

  40. He S, Song B, Li D, Zhu C, Qi W, Wen Y, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater. 2010;20:453–9.

    CAS  Google Scholar 

  41. Tortolini C, Bollella P, Antonelli ML, Antiochia R, Mazzei F, Favero G. DNA-based biosensors for Hg2+ determination by polythymine–methylene blue modified electrodes. Biosens Bioelectron. 2015;67:524–31.

    CAS  PubMed  Google Scholar 

  42. Chen G, Jin Y, Wang L, Deng J, Zhang C. Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chem Commun. 2011;47:12500–2.

    CAS  Google Scholar 

  43. Li M, Zhou X, Ding W, Guo S, Wu N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II). Biosens Bioelectron. 2013;41:889–93.

    PubMed  Google Scholar 

  44. Pokhrel LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, et al. Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: a review. Sci Total Environ. 2017;574:1379–88.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 31772055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunzhong Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Wu, C., Ying, Y. et al. Magnetically separable and recyclable bamboo-like carbon nanotube–based FRET assay for sensitive and selective detection of Hg2+. Anal Bioanal Chem 412, 3779–3786 (2020). https://doi.org/10.1007/s00216-020-02631-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02631-7

Keywords

Navigation