Skip to main content

Advertisement

Log in

Real-time fluorescence loop-mediated isothermal amplification assay for rapid and sensitive detection of Streptococcus gallolyticus subsp. gallolyticus associated with colorectal cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The increasing threat of Streptococcus gallolyticus subsp. gallolyticus (SGG) infections has gained considerable attention for its strong association with colorectal cancer (CRC). Herein, we proposed real-time fluorescence loop-mediated isothermal amplification (LAMP) as a novel, simple, rapid, and highly sensitive assay for identifying SGG for the first time. This assay was capable of detecting SGG with initial DNA concentrations ranging from 102 to 108 copies per microliter, under isothermal conditions within 30 min via real-time fluorescence monitoring. Our method was tested for specific identification of SGG strains without cross-reaction with other Streptococcus gallolyticus subspecies and Escherichia coli. The developed LAMP shows a superior performance with shorter time and higher sensitivity compared with conventional polymerase chain reaction (PCR). Significantly, this proposed approach was successfully applied for detecting SGG in clinical urine samples, which is non-invasive diagnosis, showing excellent accuracy and reliability to discriminate healthy controls and CRC patients. For comparison, these samples were also tested against PCR assay. These results yielded an analytical sensitivity of 100% and a specificity of 100% for SGG testing using LAMP. The findings suggest LAMP can be employed for detecting SGG infections which is useful for diagnosis and screening of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–28.

    Article  CAS  Google Scholar 

  3. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.

    Article  CAS  Google Scholar 

  4. Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus Association With Colorectal Cancer. Front Microbiol. 2018;9:614.

    Article  Google Scholar 

  5. Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 2012;87(3):701–30.

    Article  Google Scholar 

  6. Abdulamir AS, Hafidh RR, Bakar FA. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol Cancer. 2010;9(1):249.

    Article  Google Scholar 

  7. Boleij A, Muytjens CM, Bukhari SI, Cayet N, Glaser P, Hermans PW, et al. Novel clues on the specific association of Streptococcus gallolyticus subsp gallolyticus with colorectal cancer. J Infect Dis. 2011;203(8):1101–9.

    Article  CAS  Google Scholar 

  8. Boleij A, van Gelder MM, Swinkels DW, Tjalsma H. Clinical importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis. 2011;53(9):870–8.

    Article  CAS  Google Scholar 

  9. Boleij A, Roelofs R, Danne C, Bellais S, Dramsi S, Kato I, et al. Selective antibody response to Streptococcus gallolyticus pilus proteins in colorectal cancer patients. Cancer Prev Res (Phila). 2012;5(2):260–5.

    Article  Google Scholar 

  10. Butt J, Romero-Hernandez B, Perez-Gomez B, Willhauck-Fleckenstein M, Holzinger D, Martin V, et al. Association of Streptococcus gallolyticus subspecies gallolyticus with colorectal cancer: serological evidence. Int J Cancer. 2016;138(7):1670–9.

    Article  CAS  Google Scholar 

  11. Butt J, Werner S, Willhauck-Fleckenstein M, Michel A, Waterboer T, Zornig I, et al. Serology of Streptococcus gallolyticus subspecies gallolyticus and its association with colorectal cancer and precursors. Int J Cancer. 2017;141(5):897–904.

    Article  CAS  Google Scholar 

  12. Butt J, Jenab M, Willhauck-Fleckenstein M, Michel A, Pawlita M, Kyro C, et al. Prospective evaluation of antibody response to Streptococcus gallolyticus and risk of colorectal cancer. Int J Cancer. 2018;143(2):245–52.

    Article  CAS  Google Scholar 

  13. Kumar R, Herold JL, Schady D, Davis J, Kopetz S, Martinez-Moczygemba M, et al. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog. 2017;13(7):e1006440.

    Article  Google Scholar 

  14. Abdulamir AS, Hafidh RR, Mahdi LK, Al-jeboori T, Abubaker F. Investigation into the controversial association of Streptococcus gallolyticus with colorectal cancer and adenoma. BMC Cancer. 2009;9:403.

    Article  Google Scholar 

  15. Corredoira-Sánchez J, García-Garrote F, Rabuñal R, López-Roses L, García-País MJ, Castro E, et al. Association between bacteremia due to Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis I) and colorectal neoplasia: a case-control study. Clin Infect Dis. 2012;55(4):491–6.

    Article  Google Scholar 

  16. Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron. 2018;118:204–16.

    Article  CAS  Google Scholar 

  17. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148(1):257–66.

    Article  CAS  Google Scholar 

  18. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–545.

    Article  CAS  Google Scholar 

  19. Reid MS, Le XC, Zhang H. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example. Angew Chem Int Ed. 2018;57(37):11856–66.

    Article  CAS  Google Scholar 

  20. Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015;53(1):1–5.

    Article  CAS  Google Scholar 

  21. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.

    Article  CAS  Google Scholar 

  22. Ganguli A, Ornob A, Spegazzini N, Liu Y, Damhorst G, Ghonge T, et al. Pixelated spatial gene expression analysis from tissue. Nat Commun. 2018;9(1):202.

    Article  CAS  Google Scholar 

  23. Zhao Y, Chen F, Qin J, Wei J, Wu W, Zhao Y. Engineered Janus probes modulate nucleic acid amplification to expand the dynamic range for direct detection of viral genomes in one microliter crude serum samples. Chem Sci. 2018;9(2):392–7.

    Article  CAS  Google Scholar 

  24. Yu J, Wang F, Zhan X, Wang X, Zuo F, Wei Y, et al. Improvement and evaluation of loop-mediated isothermal amplification combined with a chromatographic flow dipstick assay and utilization in detection of Vibrio cholerae. Anal Bioanal Chem. 2019;411(3):647–58.

    Article  CAS  Google Scholar 

  25. Loo JF, But GW, Kwok HC, Lau PM, Kong SK, Ho HP, et al. A rapid sample-to-answer analytical detection of genetically modified papaya using loop-mediated isothermal amplification assay on lab-on-a-disc for field use. Food Chem. 2019;274:822–30.

    Article  CAS  Google Scholar 

  26. Zahradnik C, Martzy R, Mach RL, Krska R, Farnleitner AH, Brunner K. Detection of the food allergen celery via loop-mediated isothermal amplification technique. Anal Bioanal Chem. 2014;406(27):6827–33.

    Article  CAS  Google Scholar 

  27. Wang H, Ma Z, Qin J, Shen Z, Liu Q, Chen X, et al. A versatile loop-mediated isothermal amplification microchip platform for Streptococcus pneumoniae and Mycoplasma pneumoniae testing at the point of care. Biosens Bioelectron. 2019;126:373–80.

    Article  CAS  Google Scholar 

  28. Zhang L, Tian F, Liu C, Feng Q, Ma T, Zhao Z, et al. Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids. Lab Chip. 2018;18(4):610–9.

    Article  CAS  Google Scholar 

  29. Phillips EA, Moehling TJ, Bhadra S, Ellington AD, Linnes JC. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal Chem. 2018;90(11):6580–6.

    Article  CAS  Google Scholar 

  30. Du Y, Pothukuchy A, Gollihar JD, Nourani A, Li B, Ellington AD. Coupling sensitive nucleic acid amplification with commercial pregnancy test strips. Angew Chem Int Ed. 2017;56(4):992–6.

    Article  CAS  Google Scholar 

  31. Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3(5):877–82.

    Article  CAS  Google Scholar 

  32. Lopes PG, Cantarelli VV, Agnes G, Costabeber AM, d'Azevedo PA. Novel real-time PCR assays using TaqMan minor groove binder probes for identification of fecal carriage of Streptococcus bovis/Streptococcus equinus complex from rectal swab specimens. J Clin Microbiol. 2014;52(3):974–6.

    Article  CAS  Google Scholar 

  33. Hatrongjit R, Akeda Y, Hamada S, Gottschalk M, Kerdsin A. Multiplex PCR for identification of six clinically relevant streptococci. J Med Microbiol. 2017;66(11):1590–5.

    Article  CAS  Google Scholar 

  34. Cao G, Kong J, Xing Z, Tang Y, Zhang X, Xu X, et al. Rapid detection of CALR type 1 and type 2 mutations using PNA-LNA clamping loop-mediated isothermal amplification on a CD-like microfluidic chip. Anal Chim Acta. 2018;1024:123–35.

    Article  CAS  Google Scholar 

  35. Dong J, Xu Q, Li CC, Zhang CY. Single-color multiplexing by the integration of high-resolution melting pattern recognition with loop-mediated isothermal amplification. Chem Commun. 2019;55(17):2457–60.

    Article  CAS  Google Scholar 

  36. Jans C, Meile L, Lacroix C, Stevens MJ. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Infect Genet Evol. 2015;33:419–36.

    Article  CAS  Google Scholar 

  37. Schlegel L, Grimont F, Ageron E, Grimont PA, Bouvet A. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J Syst Evol Microbiol. 2003;53(3):631–45.

    Article  CAS  Google Scholar 

  38. Chen J, Xu Y, Yan H, Zhu Y, Wang L, Zhang Y, et al. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab Chip. 2018;18(16):2441–52.

    Article  CAS  Google Scholar 

  39. Li C, Li Z, Jia H, Yan J. One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem Commun. 2011;47(9):2595–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Clinical Laboratory, Yangpu Hospital (Shanghai, China), for the help in collecting clinical urine samples.

Funding

This work was funded by the National Natural Science Foundation of China (21375027, 21335002, 21427806), Shanghai Pujiang Program (17PJD001, 18PJD047), and Natural Science Foundation of Shanghai (12ZR1401700, 17JC1400100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Chen, Wenhao Weng or Jilie Kong.

Ethics declarations

All participants in this study provided written informed consent prior to testing. The study design was approved by the institutional research commission of Fudan University (Shanghai, China). Ethical approval was obtained from the Ethics Committee of the Department of Clinical Laboratory, Yangpu Hospital (Shanghai, China).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Ye, X., Yang, B. et al. Real-time fluorescence loop-mediated isothermal amplification assay for rapid and sensitive detection of Streptococcus gallolyticus subsp. gallolyticus associated with colorectal cancer. Anal Bioanal Chem 411, 6877–6887 (2019). https://doi.org/10.1007/s00216-019-02059-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02059-8

Keywords

Navigation