Skip to main content
Log in

Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycoprotein detection holds great potential for early diagnosis of diverse diseases. For this purpose, the combination of quartz crystal microbalance (QCM) sensor and molecular imprinting has attracted increasing attention. Nonetheless, the recently common imprinted films fabricated on QCM electrode are thick and rigid, lacking flexibility in aqueous phase. Alternatively, small molecules immobilized on the electrode to construct molecular scale film could address this problem, while stabilization of the imprinted sites remains challenging. Herein, a co-assembly complex was obtained by the mixture of template and multifunctional oligomer, which was then immobilized on the amino-modified transducer surface through epoxy-amino reaction to form a protein-imprinted film. Afterward, the remaining epoxy groups in oligomer chains were cross-linked to conserve and stabilize the orientation of imprinted sites after template elution. Template rebinding tests show that cross-linked film has much higher imprinting factors than that of the non-cross-linked counterpart. Furthermore, control proteins that are distinct in properties and structures were employed to demonstrate the selectivity of this approach, and the imprinted assay reveals high affinity and specificity towards template protein.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li L, Lu Y, Bie Z, Chen H-Y, Liu Z. Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew Chem Int Edit. 2013;52(29):7451–4.

    Article  CAS  Google Scholar 

  2. Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci U S A. 2006;103(5):1190–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lalonde M-E, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128–40.

    Article  CAS  PubMed  Google Scholar 

  4. Lu Y, Bie ZJ, Liu YC, Liu Z. Fine-tuning the specificity of boronate affinity monoliths toward glycoproteins through pH manipulation. Analyst. 2013;138(1):290–8.

    Article  CAS  PubMed  Google Scholar 

  5. Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev. 2002;102(2):285–303.

    Article  CAS  PubMed  Google Scholar 

  6. Burnham-Marusich AR, Berninsone PM. Multiple proteins with essential mitochondrial functions have glycosylated isoforms. Mitochondrion. 2012;12(4):423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Zhao GC. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor. Biosens Bioelectron. 2017;98:155–60.

    Article  CAS  PubMed  Google Scholar 

  8. Gao H, Wang X, Li M, Qi H, Gao Q, Zhang C. Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of alpha-fetoprotein via target-induced quenching mechanism. Biosens Bioelectron. 2017;98:62–7.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang P, Huang H, Wang N, Li H, Shen D, Ma H. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers. Microchim Acta. 2017;184(10):4037–45.

    Article  CAS  Google Scholar 

  10. Xia YQ, Guo TY, Song MD, Zhang BH, Zhang BL. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules. 2005;6(5):2601–6.

    Article  CAS  PubMed  Google Scholar 

  11. Guo TY, Xia YQ, Hao GJ, Song MD, Zhang BH. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials. 2004;25(27):5905–12.

    Article  CAS  PubMed  Google Scholar 

  12. Hua KC, Zhang L, Zhang ZH, Guo Y, Guo TY. Surface hydrophilic modification with a sugar moiety for a uniform-sized polymer molecularly imprinted for phenobarbital in serum. Acta Biomater. 2011;7(8):3086–93.

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Guo TY. A dual-template imprinted capsule with remarkably enhanced catalytic activity for pesticide degradation and elimination simultaneously. Chem Commun. 2013;49(11):1073–5.

    Article  CAS  Google Scholar 

  14. Guo TY, Xia YQ, Hao GJ, Zhang BH, Fu GQ, Yuan Z, et al. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydr Polym. 2005;62(3):214–21.

    Article  CAS  Google Scholar 

  15. Shang L, Liu C, Watanabe M, Chen B, Hayashi K. LSPR sensor array based on molecularly imprinted sol-gels for pattern recognition of volatile organic acids. Sensor Actuat B-chem. 2017;249:14–21.

    Article  CAS  Google Scholar 

  16. Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron. 2017;98:299–304.

    Article  CAS  PubMed  Google Scholar 

  17. Shi HG, Wang RY, Yang JX, Ren Q, Liu S, Guo TY. Novel imprinted nanocapsule with highly enhanced hydrolytic activity for organophosphorus pesticide degradation and elimination. Eur Polym J. 2015;72:190–201.

    Article  CAS  Google Scholar 

  18. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW. From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog. 2006;22(6):1474–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takeuchi T, Hishiya T. Molecular imprinting of proteins emerging as a tool for protein recognition. Org Biomol Chem. 2008;6(14):2459–67.

    Article  CAS  PubMed  Google Scholar 

  20. Luo J, Huang J, Wu Y, Sun J, Wei W, Liu X. Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection. Biosens Bioelectron. 2017;94:39–46.

    Article  CAS  PubMed  Google Scholar 

  21. Valdebenito A, Espinoza P, Lissi EA, Encinas MV. Bovine serum albumin as chain transfer agent in the acrylamide polymerization. Protein-polymer conjugates. Polymer. 2010;51(12):2503–7.

    Article  CAS  Google Scholar 

  22. Verheyen E, Schillemans JP, van Wijk M, Demeniex MA, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials. 2011;32(11):3008–20.

    Article  CAS  PubMed  Google Scholar 

  23. Sun XY, Ma RT, Chen J, Shi YP. Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Microchim Acta. 2017;184(10):3729–37.

    Article  CAS  Google Scholar 

  24. Tai DF, Jhang MH, Chen GY, Wang SC, Lu KH, Lee YD, et al. Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments. Anal Chem. 2010;82(6):2290–3.

    Article  CAS  PubMed  Google Scholar 

  25. Erturk G, Uzun L, Tumer MA, Say R, Denizli A. F-ab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron. 2011;28(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  26. Lu CH, Zhang Y, Tang SF, Fang ZB, Yang HH, Chen X, et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron. 2012;31(1):439–44.

    Article  CAS  PubMed  Google Scholar 

  27. Eersels K, Lieberzeit P, Wagner P. A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques-from principles to applications. ACS Sensors. 2016;1(10):1171–87.

    Article  CAS  Google Scholar 

  28. Dechtrirat D, Gajovic-Eichelmann N, Bier FF, Scheller FW. Hybrid material for protein sensing based on electrosynthesized MIP on a mannose terminated self-assembled monolayer. Adv Funct Mater. 2014;24(15):2233–9.

    Article  CAS  Google Scholar 

  29. Zhou DZ, Guo TY, Yang Y, Zhang ZP. Surface imprinted macroporous film for high performance protein recognition in combination with quartz crystal microbalance. Sensors Actuators B-Chem. 2011;153(1):96–102.

    Article  CAS  Google Scholar 

  30. Yang Y, Zhang W, Guo Z, Zhang Z, Zhu H, Yan R, et al. Stability enhanced, repeatability improved Parylene-C passivated on QCM sensor for aPTT measurement. Biosens Bioelectron. 2017;98:41–6.

    Article  CAS  PubMed  Google Scholar 

  31. Grab AL, Brink A, Himmelhaus M, Dahint R. Integration of core/shell nanoparticle and QCM-D sensors in a single device: a new approach to the in situ detection of solvent content in thin adsorbed films with minimized response to spurious bulk refractive index changes. Sensor Actuat B-chem. 2017;251:396–403.

    Article  CAS  Google Scholar 

  32. Liu S, Zhou DZ, Yang JX, Zhou H, Chen JT, Guo TY. Bioreducible zinc(II)-coordinative polyethylenimine with low molecular weight for robust gene delivery of primary and stem cells. J Am Chem Soc. 2017;139(14):5102–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki S, Ooya T, Kitayama Y, Takeuchi T. Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization. J Biosci Bioeng. 2015;119(2):200–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tretjakov A, Syritski V, Reut J, Boroznjak R, Opik A. Molecularly imprinted polymer film interfaced with surface acoustic wave technology as a sensing platform for label-free protein detection. Anal Chim Acta. 2016;902:182–8.

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Zhou DZ, Guo TY. Construction of a novel macroporous imprinted biosensor based on quartz crystal microbalance for ribonuclease A detection. Biosens Bioelectron. 2013;4:80–6.

    Article  CAS  Google Scholar 

  36. Yang HA, Guo TY, Zhou DZ. Surface hydrophilic modification with well-defined glycopolymer for protein imprinting matrix. Int J Biol Macromol. 2011;48(3):432–8.

    Article  CAS  PubMed  Google Scholar 

  37. Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials. 2005;26(11):1293–8.

    Article  CAS  PubMed  Google Scholar 

  38. Liu YC, Lu Y, Liu Z. Restricted access boronate affinity porous monolith as a protein A mimetic for the specific capture of immunoglobulin G. Chem Sci. 2012;3(5):1467–71.

    Article  CAS  Google Scholar 

  39. Sorokina S, Semenyuk P, Stroylova Y, Muronetz V, Shifrina Z. Complexes between cationic pyridylphenylene dendrimers and ovine prion protein: do hydrophobic interactions matter? RSC Adv. 2017;7(27):16565–74.

    Article  CAS  Google Scholar 

  40. McGuinness K, Nanda V. Collagen mimetic peptide discs promote assembly of a broad range of natural protein fibers through hydrophobic interactions. Orgc & Biomol Chem. 2017;15(28):5893–8.

    Article  CAS  Google Scholar 

  41. Jin J, Han YY, Zhang C, Liu JC, Jiang W, Yin JH, et al. Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: a combined study using QCM-D and DPI. Colloid Surf B-Biointerfaces. 2015;136:838–44.

    Article  CAS  Google Scholar 

  42. Jia X, Jiang X, Liu R, Yin J. Ultrafast generation of thick poly(ether amine) (PEA) brush on a gold surface and its protein resistance. Chem Commun. 2011;47(4):1276–8.

    Article  CAS  Google Scholar 

  43. Mahon CS, Fulton DA. Mimicking nature with synthetic macromolecules capable of recognition. Nat Chem. 2014;6(8):665–72.

    Article  CAS  PubMed  Google Scholar 

  44. Yao Y, Zhao LY, Yang JJ, et al. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Biomacromolecules. 2012;13(6):1837–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Doctoral Fund of Ministry of Education of China (RFDP, 20130031110012), NFFTBS (J1103306), PCSIRT (IRT1257), and the Fundamental Research Funds for the Central Universities for financial support. Dedicated to 100th anniversary of Nankai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianying Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, S., Pan, J. et al. Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection. Anal Bioanal Chem 411, 3941–3949 (2019). https://doi.org/10.1007/s00216-019-01867-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01867-2

Keywords

Navigation