Skip to main content
Log in

Rapid cancer diagnosis by highly fluorescent carbon nanodots-based imaging

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Carbon dots (Cdots) with bright green fluorescence were applied to the rapid and selective cell imaging for a variety of cell lines. Different labeling distributions of hepatoma cells (HepG2) and normal human liver cells (LO2) were achieved using Cdots as imaging agents. For HepG2 cells, the Cdots could rapidly permeate the cell membrane and diffuse into the cytoplasm and nucleus within 3 min, and retained their location in the targets for 24 h. However, the Cdots exhibited bright fluorescence only in the cytoplasm of LO2 cell lines. Moreover, the Cdots were almost non-cytotoxic and exhibited superior photostability over a wide range of pH. Therefore, these Cdots have great potential for rapid, luminous and selective bioimaging applications, and are expected to be used as a nucleus-staining agent in cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chen XC, Deng YL, Pang DW, Qing H, Qu F, Xie HY. Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology. 2008;19(23):235105.

    Article  CAS  PubMed  Google Scholar 

  2. Kamimura M, Saito R, Hyodo H, Tsuji K, Umeda IO. Over-1000 nm near-infrared fluorescence and SPECT/CT dual-modal in vivo imaging based on rare-earth doped ceramic nanophosphors. J Photopolym Sci Tecnol. 2016;29(4):525–32.

    Article  CAS  Google Scholar 

  3. Wang GL, Fang X, Wu XM, Hu XL, Li ZJ. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme. Biosens Bioelectron. 2016;81:214–20.

    Article  CAS  PubMed  Google Scholar 

  4. Hou J, Zhou T, Wang L, Zhang P, Ding L. Template-free microwave-assisted fabrication of carbon dots/Zn(OH)2 composites for separation and enhancing chemical sensing. Sensor Actuat B Chem. 2016;30:615–22.

    Article  CAS  Google Scholar 

  5. Karali KK, Sygellou L, Stalikas CD. Highly fluorescent N-doped carbon nanodots as an effective multi-probe quenching system for the determination of nitrite, nitrate and ferric ions in food matrices. Talanta. 2018;189:480–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta A, Verma NC, Khan S, Nandi CK. Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens Bioelectron. 2016;81:465–72.

    Article  CAS  PubMed  Google Scholar 

  7. Wei XM, Xu Y, Li YH, Yin XB, He XW. Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Adv. 2014;4(84):44504–8.

    Article  CAS  Google Scholar 

  8. Hou X, Hu Y, Wang P, Yang L, Awak MMAI. Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon. 2017;122:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu L, Xu G, Song Q, Tang T, Wang X, Wei F, et al. Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sensor Actuat B Chem. 2016;231:506–12.

    Article  CAS  Google Scholar 

  10. Atchudan R, Sethuraman MG, Yong RL. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl Surf Sci. 2016;384:432–41.

    Article  CAS  Google Scholar 

  11. Zou WS, Ji YJ, Wang XF, Zhao QC, Zhang J. Insecticide as a precursor to prepare highly bright carbon dots for patterns printing and bioimaging: a new pathway for making poison profitable. Chem Eng J. 2016;294:323–32.

    Article  CAS  Google Scholar 

  12. Shi L, Zhao B, Li X, Zhang G, Zhang Y. Eco-friendly synthesis of nitrogen-doped carbon nanodots from wool for multicolor cell imaging, patterning, and biosensing. Sensor Actuat B Chem. 2016;235:316–24.

    Article  CAS  Google Scholar 

  13. Jia X, Pei M, Zhao X, Tian K, Zhou T, Liu P. Ultrastable green fluorescence carbon dots with high quantum yield for bioimaging and use as theranostic carriers. Acs Biomater Sci Eng. 2016;2(9):1641–8.

    Article  CAS  Google Scholar 

  14. Gao N, Yang W, Nie H, Gong Y, Jing J, Gao L, et al. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron. 2017;96:300–7.

    Article  CAS  Google Scholar 

  15. Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep. 2016;6:21170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Wang X, Bhirde A, Cao J, Zeng Y. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA. Adv Healthc Mater. 2014;3(8):1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng T, Ai X, An G, Yang P, Zhao Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. 2016;10(4):4410.

    Article  CAS  Google Scholar 

  18. Lin PY, Hsieh CW, Kung ML, Chu LY, Huang HJ, Chen HT, et al. Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging. J Biotechnol. 2014;189:114–9.

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Wu M, Liu Y, Feng XZ, Yin XB. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J. 2013;19(7):2276–83.

    Article  CAS  PubMed  Google Scholar 

  20. Ding YY, Gong XJ, Liu Y, Lu WJ, Gao YF, Xian M, et al. Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells. Talanta. 2018;189:8–5.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016;19(7):382–93.

    Article  CAS  Google Scholar 

  22. Li B, Gong D, Li X, Zhang L, Dong Y. Subcellular fluorescence imaging for BHK cell and multiple sensing based on carbon dots with two strong emission peaks. Sensor Actuat B Chem. 2018;258:757–65.

    Article  CAS  Google Scholar 

  23. Kang YF, Fang YW, Li YH, Li W, Yin XB. Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. Chem Commun. 2015;51(95):16956–9.

    Article  CAS  Google Scholar 

  24. Jiang K, Sun S, Zhang L, Lu Y, Wu A. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Engl. 2015;54(18):5360–3.

    Article  CAS  PubMed  Google Scholar 

  25. Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 2014;6(21):13119–25.

    Article  CAS  PubMed  Google Scholar 

  26. Hou J, Dong G, Tian Z, Lu J, Wang Q, Ai S, et al. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem. 2016;202:81–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng Q, Shao D, He X, Ren Z, Ji W, Shan C, et al. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B. 2016;4:5119–26.

    Article  CAS  Google Scholar 

  28. Zhang Y, Chan KF, Wang B, Chiu PWY, Zhang L. Spore-derived color-tunable multi-doped carbon nanodots as sensitive nanosensors and intracellular imaging agents. Sensor Actuat B Chem. 2018;271:128–36.

    Article  CAS  Google Scholar 

  29. Zhang LW, Monteiroriviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110(1):138–55.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. J Nanobiotechnol. 2010;8(1):13.

    Article  CAS  Google Scholar 

  31. He H, Ren Y, Wang Z, Xie ZGA. pH-responsive poly(ether amine) micelle with hollow structure for controllable drug release. Rcs Adv. 2016;6:91940.

    CAS  Google Scholar 

  32. Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, et al. Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. 2007;7:3452–61.

    Article  CAS  PubMed  Google Scholar 

  33. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7(11):5577.

    Article  Google Scholar 

  34. Peyro M, Soheilypour M, Lee BL, Mofrad MRK. Evolutionarily conserved sequence features regulate the formation of the FG network at the center of the nuclear pore complex. Sci Rep. 2015;5(9):487–504.

    Google Scholar 

  35. Han J, Burgess K. Fluorescent indicators for intracellular pH. Chem Rev. 2010;110:2709–28.

    Article  CAS  PubMed  Google Scholar 

  36. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–70.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Zhang F, Zhao M, Zhu X, Jiang C, Ke C, et al. Effects of intracellular process on the therapeutic activation of nanomedicine. Pharm Anal Acta. 2015;6:5.

    Google Scholar 

  38. Tagliazucchi M, Peleg O, Kröger M, Rabin Y, Szleifer I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. PNAS. 2013;110(9):3363–8.

    Article  PubMed  Google Scholar 

  39. He DD, Liu W, Sun R, Fan C, Xu YJ, Ge JF. N-Pyridineium-2-yl Darrow Red analogue: unique near-infrared lysosome-biomarker for the detection of cancer cells. Anal Chem. 2015;87:1499–502.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 51505324, 81602506, 61471255, 61474079), Basic Research Program of Shanxi for Youths (201701D221111, 201701D221110), research professor program of Korea University (141594) and China Postdoctoral Science Foundation (2017 M621664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbo Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Q., Che, M., Hu, S. et al. Rapid cancer diagnosis by highly fluorescent carbon nanodots-based imaging. Anal Bioanal Chem 411, 967–972 (2019). https://doi.org/10.1007/s00216-018-1500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1500-1

Keywords

Navigation