Skip to main content
Log in

Preparation of magnetic melamine-formaldehyde resin and its application to extract nonsteroidal anti-inflammatory drugs

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Magnetic melamine-formaldehyde resin was prepared via water-in-oil emulsification approach by entrapping Fe3O4 magnetic nanoparticles as the core. The preparation of the magnetic resin was optimized by investigating the amount of polyethylene glycol 20000 and Fe3O4 nanoparticles, the concentration of the catalyst (hydrochloric acid), as well as the mechanical stirring rate. The prepared material was characteristic of excellent anion-exchange capacity, good water wettability, and proper magnetism. Its application was demonstrated by magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs coupled to high performance liquid chromatography-UV analysis. Under the optimal conditions, the proposed method showed broad linear range of 1–5000 ng mL–1 of milk and urine samples, satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 12.4% and 9.7%, respectively, and low limits of detection of 0.2 ng mL–1 for the studied nonsteroidal anti-inflammatory drugs. The developed method was successfully used for the determination of the nonsteroidal anti-inflammatory drugs in spiked urine and milk samples. The magnetic melamine-formaldehyde resin was promising for the sample pretreatment of acidic analytes via anion-exchange interaction with convenient operation from complex sample matrix.

Magnetic solid-phase extraction based on melamine-formaldehyde resin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baraka A, Hall PJ, Heslop MJ. Preparation and characterization of melamine–formaldehyde–DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater. React Funct Polym. 2007;67:585–600.

    Article  CAS  Google Scholar 

  2. Baraka A, Hall PJ, Heslop MJ. Melamine–formaldehyde–NTA chelating gel resin: synthesis, characterization and application for copper(II) ion removal from synthetic wastewater. J Hazard Mater. 2007;140:86–94.

    Article  CAS  Google Scholar 

  3. Aydın A, İmamoğlu M, Gülfen M. Separation and recovery of gold(III) from base metal ions using melamine–formaldehyde–thiourea chelating resin. J Appl Polym Sci. 2008;107:1201–6.

    Article  Google Scholar 

  4. Demirata B, Tor I, Filik H, Afşar H. Separation of Cr(III) and Cr(VI) using melamine-formaldehyde resin and determination of both species in water by FAAS. Fresenius J Anal Chem. 1996;356:375–7.

    Article  CAS  Google Scholar 

  5. Demirata B. Preconcentration of Cr(VI) ion on melamine formaldehyde resin. Fresenius J Anal Chem. 1992;343:357–9.

    Article  CAS  Google Scholar 

  6. Gümüş G, Demirata B, Apak R. Simultaneous spectrophotometric determination of cyanide and thiocyanate after separation on a melamine-formaldehyde resin. Talanta. 2000;53:305–15.

    Article  Google Scholar 

  7. Pevida C, Drage TC, Snape CE. Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture. Carbon. 2008;46:1464–74.

    Article  CAS  Google Scholar 

  8. Goworek J, Deryło-Marczewska A, Stefaniak W, Zgrajka W, Kusak R. Absorption/adsorption properties of porous phenolic-formaldehyde and melamine-formaldehyde polymers. Mater Chem Phys. 2002;77:276–80.

    Article  Google Scholar 

  9. Mirabi A, Rad AS, Nourani S. Application of modified magnetic nanoparticles as a sorbent for preconcentration and determination of nickel ions in food and environmental water samples. TrAC Trends Anal Chem. 2015;74:146–51.

    Article  CAS  Google Scholar 

  10. Meng J, Bu J, Deng C, Zhang X. Preparation of polypyrrole-coated magnetic particles for micro solid-phase extraction of phthalates in water by gas chromatography-mass spectrometry analysis. J Chromatogr A. 2011;1218:1585–91.

    Article  CAS  Google Scholar 

  11. Kawasaki H, Nakai K, Arakawa R, Athanassiou EK, Grass RN, Stark WJ. Functionalized graphene-coated cobalt nanoparticles for highly efficient surface-assisted laser desorption/ionization mass spectrometry analysis. Anal Chem. 2012;84:9268–75.

    CAS  Google Scholar 

  12. Tang M, Wang Q, Jiang M, et al. Magnetic solid-phase extraction based on methylcellulose coated Fe3O4–SiO2–phenyl for HPLC-DAD analysis of sildenafil and its metabolite in biological samples. Talanta. 2014;130:427–32.

    Article  CAS  Google Scholar 

  13. Xue SW, Tang MQ, Xu L, Shi ZG. Magnetic nanoparticles with hydrophobicity and hydrophilicity for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A. 2015;1411:9–16.

    Article  CAS  Google Scholar 

  14. Malone EM, Dowling G, Elliott CT, Kennedy DG, Regan L. Development of a rapid, multi-class method for the confirmatory analysis of anti-inflammatory drugs in bovine milk using liquid chromatography tandem mass spectrometry. J Chromatogr A. 2009;1216:8132–40.

    Article  CAS  Google Scholar 

  15. Gallo P, Fabbrocino S, Vinci F, et al. Multi-residue determination of nonsteroidal anti-inflammatory drug residues in animal serum and plasma by HPLC and photo-diode array detection. J Chromatogr Sci. 2006;44:585–90.

    Article  CAS  Google Scholar 

  16. Gentili A. LC-MS methods for analyzing anti-inflammatory drugs in animal-food products. TrAC Trends Anal Chem. 2007;26:595–608.

    Article  CAS  Google Scholar 

  17. Gentili A. Determination of nonsteroidal anti-inflammatory drugs in environmental samples by chromatographic and electrophoretic techniques. Anal Bioanal Chem. 2007;387:1185–202.

    Article  CAS  Google Scholar 

  18. Gallo P, Fabbrocino S, Dowling G, et al. Confirmatory analysis of nonsteroidal anti-inflammatory drugs in bovine milk by high-performance liquid chromatography with fluorescence detection. J Chromatogr A. 2010;1217:2832–9.

    Article  CAS  Google Scholar 

  19. Alshana U, Göğer NG, Ertaş N. Dispersive liquid–liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of nonsteroidal anti-inflammatory drugs in milk and dairy products. Food Chem. 2013;138:890–7.

    Article  CAS  Google Scholar 

  20. Peng T, Zhu AL, Zhou YN, et al. Development of a simple method for simultaneous determination of nine subclasses of nonsteroidal anti-inflammatory drugs in milk and dairy products by ultra-performance liquid chromatography with tandem mass spectrometry. J Chromatogr B. 2013;933:15–23.

    Article  CAS  Google Scholar 

  21. Aloysius MM, Kaye PV, Lobo DN. Nonsteroidal anti-inflammatory drug (NSAID)-induced colonic strictures and perforation: a case report. Dig Liver Dis. 2006;38:276–8.

    Article  CAS  Google Scholar 

  22. Elliott RA, Hooper L, Payne K, Brown TJ, Roberts C, Symmons D. Preventing nonsteroidal anti-inflammatory drug-induced gastrointestinal toxicity: are older strategies more cost-effective in the general population? Rheumatology. 2006;45:606–13.

    Article  CAS  Google Scholar 

  23. Cha YB, Myung SW. Determination of nonsteroidal anti-inflammatory drugs in human urine sample using HPLC/UV and three phase hollow fiber-liquid phase microextraction (HF-LPME). Bull Kor Chem Soc. 2013;34:3444–50.

    Article  CAS  Google Scholar 

  24. Commission Regulation (EU) no 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Commun. 2010;L15:1–72.

  25. Sarafraz-Yazdi A, Amiri A, Rounaghi G, Eshtiagh-Hosseini H. Determination of nonsteroidal anti-inflammatory drugs in urine by hollow-fiber liquid membrane-protected solid-phase microextraction based on sol–gel fiber coating. J Chromatogr B. 2012;908:67–75.

    Article  CAS  Google Scholar 

  26. Dowling G, Gallo P, Malone E, Regan L. Rapid confirmatory analysis of nonsteroidal anti-inflammatory drugs in bovine milk by rapid resolution liquid chromatography tandem mass spectrometry. J Chromatogr A. 2009;1216:8117–31.

    Article  CAS  Google Scholar 

  27. Dubreil-Chéneau E, Pirotais Y, Bessiral M, Roudaut B, Verdon E. Development and validation of a confirmatory method for the determination of 12 nonsteroidal anti-inflammatory drugs in milk using liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2011;1218:6292–301.

    Article  Google Scholar 

  28. Mao X, He M, Chen B, Hu B. Membrane protected C18 coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection for the determination of nonsteroidal anti-inflammatory drugs in water samples. J Chromatogr A. 2016;1472:27–34.

    Article  CAS  Google Scholar 

  29. Fan Y, Feng Y-Q, Da S-L, Wang Z-H. In-tube solid phase microextraction using a β-cyclodextrin coated capillary coupled to high performance liquid chromatography for determination of nonsteroidal anti-inflammatory drugs in urine samples. Talanta. 2005;65:111–7.

    CAS  Google Scholar 

  30. Martinez-Sena T, Armenta S, Guardia M, Esteve-Turrillas FA. Determination of nonsteroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J Pharm Biomed. 2016;131:48–53.

    Article  CAS  Google Scholar 

  31. Shukri DSM, Sanagi MM, Ibrahim WAW, Abidin NNZ, Aboul-Enein HY. Liquid chromatographic determination of NSAIDs in urine after dispersive liquid–liquid microextraction based on solidification of floating organic droplets. Chromatographia. 2015;78:987–94.

    Article  CAS  Google Scholar 

  32. Gallo P, Fabbrocino S, Vinci F, Fiori M, Danese V, Serpe L. Confirmatory identification of 16 nonsteroidal anti-inflammatory drug residues in raw milk by liquid chromatography coupled with ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:841–54.

    Article  CAS  Google Scholar 

  33. Ye L, Wang Q, Xu J, Shi ZG, Xu L. Restricted-access nanoparticles for magnetic solid-phase extraction of steroid hormones from environmental and biological samples. J Chromatogr A. 2012;1244:46–54.

    Article  CAS  Google Scholar 

  34. Singh M, Kumar V. Preparation and characterization of melamine–formaldehyde–polyvinylpyrrolidone polymer resin for better industrial uses over melamine resins. J Appl Polym Sci. 2009;114:1870–8.

    Article  CAS  Google Scholar 

  35. Wilson RC, Pfohl WF. Study of cross-linking reactions of melamine/formaldehyde resin with hydroxyl functional polyester by generalized 2-D infrared spectroscopy. Vib Spectrosc. 2000;23:13–22.

    Article  CAS  Google Scholar 

  36. Singru RN, Gurnule WB, Khati VA, Zade AB, Dontulwar JR. Eco-friendly application of p-cresol–melamine–formaldehyde polymer resin as an ion-exchanger and its electrical and thermal study. Desalination. 2010;263:200–10.

    Article  CAS  Google Scholar 

  37. Kawaguchi S, Yekta A, Winnik MA. Surface characterization and dissociation properties of carboxylic acid core–shell latex particle by potentiometric and conductometric titration. J Colloid Interface Sci. 1995;176:362–9.

    Article  CAS  Google Scholar 

  38. Salaün F, Devaux E, Bourbigot S, Rumeau P. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem Eng J. 2009;155:457–65.

    Article  Google Scholar 

  39. Lv T, Yan H, Cao J, Liang S. Hydrophilic molecularly imprinted resorcinol–formaldehyde–melamine resin prepared in water with excellent molecular recognition in aqueous matrices. Anal Chem. 2015;87:11084–91.

    Article  CAS  Google Scholar 

  40. Tsogas GZ, Giokas DL, Vlessidis AG. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal Chem. 2014;86:3484–92.

    Article  CAS  Google Scholar 

  41. Birinci E, Gülfen M, Aydın AO. Separation and recovery of palladium(II) from base metal ions by melamine–formaldehyde–thiourea (MFT) chelating resin. Hydrometallurgy. 2009;95:15–21.

    Article  CAS  Google Scholar 

  42. Wu K, Song L, Wang Z, Hu Y. Microencapsulation of ammonium polyphosphate with PVA–melamine–formaldehyde resin and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1914–21.

    Article  CAS  Google Scholar 

  43. Farajzadeh MA, Nasrollahpour H, Mogaddam MRA, Khoshmaram L. Determination of widely used nonsteroidal anti-inflammatory drugs in biological fluids using simultaneous derivatization and air-assisted liquid–liquid microextraction followed by gas chromatography-flame ionization detection. J Iran Chem Soc. 2016;13:289–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Program for New Century Excellent Talents in University (no. NCET-12-0213), and the Fundamental Research Funds for the Central Universities (no. 2015TS135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Shu-Wen Xue and Jing Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, SW., Li, J. & Xu, L. Preparation of magnetic melamine-formaldehyde resin and its application to extract nonsteroidal anti-inflammatory drugs. Anal Bioanal Chem 409, 3103–3113 (2017). https://doi.org/10.1007/s00216-017-0251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0251-8

Keywords

Navigation