Skip to main content

Advertisement

Log in

Near-infrared-emitting NaYF4:Yb,Tm/Mn upconverting nanoparticle/gold nanorod electrochemiluminescence resonance energy transfer system for sensitive prostate-specific antigen detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemiluminescence resonance energy transfer (ECL-RET) system that detects prostate-specific antigen (PSA) was created. Near-infrared (NIR)-emitting NaYF4:Yb,Tm/Mn upconverting nanoparticles (UCNPs) are used as donors, and gold nanorods (GNRs) are used as acceptors. The ECL was enhanced nearly threefold by Mn2+ doping, with an emission peak appearing at an NIR wavelength of 808 nm. Anti-PSA 1 (Ab1) was bound to the surfaces of UCNPs after being modified with poly(acrylic acid) (PAA). As for acceptors, cetyltrimethylammonium bromide (CTAB)-capped GNRs were treated with 11-mercaptoundecanoic acid (MUDA) and then conjugated with Anti-PSA 2 (Ab2). When PSA was added, donors and acceptors were brought in close proximity through specific interactions of antibodies and antigens, resulting in high quenching efficiency levels. Under optimal conditions, the linear range of detection was 3.75–938 pg/mL for PSA (R = 0.999), with a detection limit as low as 3.16 pg/mL. This method can be applied to detect PSA in human serums with satisfactory results.

An electrochemiluminescence resonance energy transfer system was developed for determination of prostate-specific antigen using near-infrared-emitting NaYF4:Yb,Tm/Mn upconverting nanoparticles as donors and gold nanorods as acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Pansare V, Hejazi S, Faenza W, Prud’homme RK. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers. Chem Mater. 2012;24:812–27.

    Article  CAS  Google Scholar 

  2. Hutteman M, van der Vorst JR, Gaarenstroom KN, Peters AA, Mieog JS, Schaafsma BE, et al. Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer. Am J Obstet Gynecol. 2012;206:89 e1–5.

    Article  Google Scholar 

  3. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.

    Article  CAS  Google Scholar 

  4. Frangioni J. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.

    Article  CAS  Google Scholar 

  5. Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed Engl. 2008;47:7602–25.

    Article  CAS  Google Scholar 

  6. Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl. 2006;45:4562–89.

    Article  CAS  Google Scholar 

  7. Qin G, Zhao S, Huang Y, Jiang J, Ye F. Magnetic bead-sensing-platform-based chemiluminescence resonance energy transfer and its immunoassay application. Anal Chem. 2012;84:2708–12.

    Article  CAS  Google Scholar 

  8. Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem. 2006;118:5264–67.

    Article  Google Scholar 

  9. Zhao S, Huang Y, Liu R, Shi M, Liu YM. A nonenzymatic chemiluminescent reaction enabling chemiluminescence resonance energy transfer to quantum dots. Chemistry. 2010;16:6142–5.

    Article  CAS  Google Scholar 

  10. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, et al. Quantum dots as simultaneous acceptors and donors in time-gated forster resonance energy transfer relays: characterization and biosensing. J Am Chem Soc. 2012;134:1876–91.

    Article  CAS  Google Scholar 

  11. So MK, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006;24:339–43.

    Article  CAS  Google Scholar 

  12. He LJ, Wu MS, Xu JJ, Chen HY. A reusable potassium ion biosensor based on electrochemiluminescence resonance energy transfer. Chem Commun (Camb). 2013;49:1539–41.

    Article  CAS  Google Scholar 

  13. Qi W, Wu D, Zhao J, Liu Z, Zhang W, Zhang L, et al. Electrochemiluminescence resonance energy transfer based on ru(phen)3 2+-doped silica nanoparticles and its application in "turn-on" detection of ozone. Anal Chem. 2013;85:3207–12.

    Article  CAS  Google Scholar 

  14. Shan Y, Xu JJ, Chen HY. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun (Camb) .2009;905-7.

  15. Shan Y, Xu JJ, Chen HY. Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen. Chem Commun (Camb). 2010;46:5079–81.

    Article  CAS  Google Scholar 

  16. Wu MS, Shi HW, He LJ, Xu JJ, Chen HY. Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer. Anal Chem. 2012;84:4207–13.

    Article  CAS  Google Scholar 

  17. Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev. 2009;38:976–89.

    Article  CAS  Google Scholar 

  18. An M, Cui J, He Q, Wang L. Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. J Mater Chem B. 2013;1:1333–9.

    Article  CAS  Google Scholar 

  19. Wang L, Li Y. Green upconversion nanocrystals for DNA detection. Chem Commun (Camb). 2006;2557-9.

  20. Chen H, Guan Y, Wang S, Ji Y, Gong M, Wang L. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb, Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods. Langmuir. 2014;30:13085–91.

    Article  CAS  Google Scholar 

  21. Yuan F, Chen H, Xu J, Zhang Y, Wu Y, Wang L. Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Chemistry. 2014;20:2888–94.

    Article  CAS  Google Scholar 

  22. Zhang J, Wang S, Gao N, Feng D, Wang L, Chen H. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosens Bioelectron. 2015;72:282–7.

    Article  CAS  Google Scholar 

  23. Guo X, Wu S, Duan N, Wang Z. Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal Bioanal Chem. 2016;408:3823–31.

    Article  CAS  Google Scholar 

  24. Liu M, Ye Y, Yao C, Zhao W, Huang X. Mn2+-doped NaYF4:Yb/Er upconversion nanoparticles with amplified electrogenerated chemiluminescence for tumor biomarker detection. J Mater Chem B. 2014;2:6626–33.

    Article  CAS  Google Scholar 

  25. Sim HG, Cheng CW. Changing demography of prostate cancer in Asia. Eur J Cancer. 2005;41:834–45.

    Article  Google Scholar 

  26. Li L; Chen Y; Lu Q; Ji J; Shen Y; Xu M; Fei R; Yang G; Zhang K; Zhang J.-R; Zhu J-J Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Scientific reports 2013:3.

  27. Wang L, Zhang Y, Zhu Y. One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res. 2010;3:317–25.

    Article  CAS  Google Scholar 

  28. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater. 2012;24:1226–31.

    Article  CAS  Google Scholar 

  29. Wu S, Duan N, Zhang H, Wang Z. Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor. Anal Bioanal Chem. 2014;407:1303–12.

    Article  Google Scholar 

  30. Dai Y, Xiao H, Liu J, Yuan Q, Ma P, Yang D, et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc. 2013;135:18920–9.

    Article  CAS  Google Scholar 

  31. Li LL, Wu P, Hwang K, Lu Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J Am Chem Soc. 2013;135:2411–4.

    Article  CAS  Google Scholar 

  32. Li Z, Lv S, Wang Y, Chen S, Liu Z. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J Am Chem Soc. 2015;137:3421–7.

    Article  CAS  Google Scholar 

  33. Yang J, Shen D, Li X, Li W, Fang Y, Wei Y, et al. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. Chem Eur J. 2012;18:13642–50.

    Article  CAS  Google Scholar 

  34. Ding Y, Zhu H, Zhang X, Zhu JJ, Burda C. Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe(3+)-sensing. Chem Commun (Camb). 2013;49:7797–9.

    Article  CAS  Google Scholar 

  35. Li H, Wang L. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification. Analyst. 2013;138:1589–95.

    Article  CAS  Google Scholar 

  36. Orendorff CJ, Murphy CJ. Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B. 2006;110:3990–4.

    Article  CAS  Google Scholar 

  37. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.

    Article  CAS  Google Scholar 

  38. Yu C, Irudayaraj J. Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays. Biophys J. 2007;93:3684–92.

    Article  CAS  Google Scholar 

  39. Zhang R, Fan L, Fang Y, Yang S. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J Mater Chem. 2008;18:4964–70.

    Article  CAS  Google Scholar 

  40. Huang H, Li J, Zhu J-J. Electrochemiluminescence based on quantum dots and their analytical application. Anal Methods. 2011;3:33–42.

    Article  CAS  Google Scholar 

  41. Wang L, Xu S, Li H, Yue Q, Gu X, Zhang S, et al. Study for the electrochemical deposition on single carbon fiber and electrochemiluminescence of ZnO nanostructures. CrystEngComm. 2013;15:8444–9.

    Article  CAS  Google Scholar 

  42. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22:2971–79.

    Article  CAS  Google Scholar 

  43. Chen Y, Yang M, Xiang Y, Yuan R, Chai Y. Binding-induced autonomous disassembly of aptamer-DNAzyme supersandwich nanostructures for sensitive electrochemiluminescence turn-on detection of ochratoxin A. Nanoscale. 2014;6:1099–104.

    Article  CAS  Google Scholar 

  44. Ma MN, Zhang X, Zhuo Y, Chai YQ, Yuan R. An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag. Nanoscale. 2015;7:2085–92.

    Article  CAS  Google Scholar 

  45. Shang L, Dong SJ. Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal Chem. 2009;81:1465–70.

    Article  CAS  Google Scholar 

  46. Lang QL, Wang F, Yin L, Liu MJ, Petrenko VA, Liu AH. Specific probe selection from landscape phage display library and its application in enzyme-linked immunosorbent assay of free prostate-specific antigen. Anal Chem. 2014;86:2767–74.

    Article  CAS  Google Scholar 

  47. Kong RM, Ding L, Wang ZJ, You JM, Qu FL. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem. 2015;407:369–77.

    Article  CAS  Google Scholar 

  48. Choi HK, Lee JH. Role of magnetic Fe3O4 graphene oxide in chemiluminescent aptasensors capable of sensing tumor markers in human serum. Anal Methods-UK. 2013;5:6964–8.

    Article  CAS  Google Scholar 

  49. Zhang JG, Wang SZ, Gao N, Feng DX, Wang L, Chen HQ. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosens Bioelectron. 2015;72:282–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21475001, 21675002), Anhui Provincial Natural Science Foundation (1408085QB40), Foundation for Innovation Team of Bioanalytical Chemistry and Special and Excellent Research Fund of Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lun Wang or Hongqi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Ling, B., Gao, Z. et al. Near-infrared-emitting NaYF4:Yb,Tm/Mn upconverting nanoparticle/gold nanorod electrochemiluminescence resonance energy transfer system for sensitive prostate-specific antigen detection. Anal Bioanal Chem 409, 2675–2683 (2017). https://doi.org/10.1007/s00216-017-0212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0212-2

Keywords

Navigation