Skip to main content
Log in

“Inherently chiral” thiophene-based electrodes at work: a screening of enantioselection ability toward a series of pharmaceutically relevant phenolic or catecholic amino acids, amino esters, and amine

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 27 December 2016

Abstract

“Inherently chiral” thiophene-based electroactive oligomer films have recently been shown to exhibit outstanding chirality manifestations. One of the most exciting among them is an unprecedented enantioselection ability as electrode surfaces. In fact, in preliminary chiral voltammetry experiments, the new electrodes have been shown to both discriminate the enantiomers of chiral probes (either enantiopure or in a mixture, in terms of large differences in peak potentials) and quantify them (in terms of linear dynamic ranges in peak currents), without the need for preliminary separation steps. Such ability has now been tested on a series of chiral DOPA-related molecules, from phenolic amino acid tyrosine (together with its methyl ester) to catecholic amino acid DOPA (together with its methyl ester), to catecholamine epinephrine (adrenaline). The wide-range enantioselectivity of the new inherently chiral electrode surfaces is fully confirmed, as large peak potential differences are obtained for probe enantiomers of the whole series working in common aqueous buffers. Moreover, interesting modulating effects on enantiodiscrimination can be observed as a function of both molecular structure and pH.

Inherently chiral thiophene-based electrodes at work with pharmaceutically relevant probes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berthod A. Chiral recognition mechanisms. Anal Chem. 2006;78:2093–9.

    Article  Google Scholar 

  2. Trojanowicz M, Kaniewska M. Electrochemical chiral sensors and biosensors. Electroanalysis. 2009;21:229–38.

    Article  CAS  Google Scholar 

  3. Zhang J, Albelda MT, Liu Y, Canary JW. Chiral nanotechnology. Chirality. 2005;17:404–20.

    Article  CAS  Google Scholar 

  4. Inose Y, Moniwa S, Aramata A, Yamagishi A, Naing K. Chiral monolayer of self-assembled Δ-[Os(bpy) 2L(Cl)]+ [bpy = 2,2′-bipyridyl, L = 1,2-bis(4-pyridyl)ethane] on a platinum electrode. Chem Commun. 1997;111–112.

  5. Han Q, Chen Q, Wang Y, Zhou J, Fu Y. Enantioselective recognition of Dopa Enantiomers in the presence of ascorbic acid or tyrosine. Electroanalysis. 2012;24:332–7.

    Article  CAS  Google Scholar 

  6. Nakanishi T, Matsunaga M, Nagasaka M, Asahi T, Osaka T. Enantioselectivity of redox reaction of DOPA at the gold electrode modified with a self-assembled monolayer of homocysteine. J Am Chem Soc. 2006;128:13322–3.

    Article  CAS  Google Scholar 

  7. Zhou J, Wang L, Chen Q, Fu Y, Wang Y. Selective response of antigen-antibody reactions on chiral surfaces modified with 1,2-diphenylethylenediamine enantiomers. Surf Interface Anal. 2012;44:170–4.

    Article  CAS  Google Scholar 

  8. Zhou Y, Yu B, Levon K. Potentiometric sensing of chiral amino acids. Chem Mater. 2003;15:2774–9.

    Article  CAS  Google Scholar 

  9. Cichelli J, Zharov I. Chiral permselectivity in surface-modified nanoporous opal films. J Am Chem Soc. 2006;128:8130–1.

    Article  CAS  Google Scholar 

  10. Pleus S, Schwientek M. Enantioselective electrodes: synthesis and use of polypyrroles prepared from chiral pyrrole derivatives. Synth Met. 1998;95:233–8.

    Article  CAS  Google Scholar 

  11. Dong L, Lu B, Duan X, Xu J, Hu D, Zhang K, et al. Novel chiral PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers: synthesis and characterization. J Polym Sci A Polym Chem. 2015;53:2238–51.

    Article  CAS  Google Scholar 

  12. Lemaire M, Delabouglise D, Garreau R, Guy A, Roncali J. Enantioselective chiral poly(thiophenes). J Chem Soc Chem Commun. 1988;658–661.

  13. Fireman-Shoresh S, Turyan I, Mandler D, Avnir D, Marx S. Chiral electrochemical recognition by very thin molecularly imprinted sol–gel films. Langmuir. 2005;21:7842–7.

    Article  CAS  Google Scholar 

  14. Pernites RB,Venkata SK, Tiu BDB, Yago ACC, Advincula RC. Nanostructured, molecularly imprinted, and template-patterned polythiophenes for chiral sensing and differentiation. Small. 2012;81669–1674.

  15. Liang H, Ling T, Rick JF, Chou T. Molecularly imprinted electrochemical sensor able to enantioselectively recognize D and L-tyrosine. Anal Chim Acta. 2005;542:83–9.

    Article  CAS  Google Scholar 

  16. Mogi I, Watanabe K. Chiral recognition of magneto-electropolymerized polyaniline film electrodes. Sci Technol Adv Mater. 2006;7:342–5.

    Article  CAS  Google Scholar 

  17. Chen Y, Xu J, Chen C, Guo D, Fu Y. The application of L-tryptophan functionalized graphene-supported platinum nanoparticles for chiral recognition of DOPA enantiomers. New J Chem. 2015;39:6919–24.

    Article  CAS  Google Scholar 

  18. Guo D, Ran P, Chen C, Chen Y, Xuan C, Fu Y. Study on chiral nanocomposite for recognition of DOPA enantiomers via square wave voltammetry. J Electrochem Soc. 2015;162:B354–9.

    Article  CAS  Google Scholar 

  19. Ahmadi A, Attard G, Feliu J, Rodes A. Surface reactivity at “chiral” platinum surfaces. Langmuir. 1999;15:2420–4.

    Article  CAS  Google Scholar 

  20. Yang H, Chi D, Sun Q, Sun W, Wang H, Lu J. Entrapment of alkaloids within silver: from enantioselective hydrogenation to chiral recognition. Chem Commun. 2014;50:8868–70.

    Article  CAS  Google Scholar 

  21. Wattanakit C, Saint Come YB, Lapeyre V, Bopp PA, Heim M, Yadnum S, et al. Enantioselective recognition at mesoporous chiral metal surfaces. Nat Commun. 2014;5:4325/1–8.

    Article  CAS  Google Scholar 

  22. Yutthalekha T, Warakulwit C, Limtrakul J, Kuhn A. Enantioselective recognition of DOPA by mesoporous platinum imprinted with mandelic acid. Electroanalysis. 2015;27:2209–13.

    Article  CAS  Google Scholar 

  23. Shi H, Chen C, Tang B, Zhao G. Photoelectrochemical enantioselective recognition of amino acid enantiomers on (001) facet TiO2 surface. Electrochim Acta. 2014;146:359–64.

    Article  CAS  Google Scholar 

  24. Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, et al. A sensitivity-enhanced field-effect chiral sensor. Nat Mater. 2008;7:412–7.

    Article  CAS  Google Scholar 

  25. Sannicolò F, Arnaboldi S, Benincori T, Bonometti V, Cirilli R, Dunsch L, et al. Potential-driven chirality manifestations and impressive enantioselectivity by inherently chiral electroactive organic films. Angew Chem Int Ed. 2014;53:2623–7.

    Article  Google Scholar 

  26. Sannicolò F, Mussini PR, Benincori T, Cirilli R, Abbate S, Arnaboldi S, et al. Inherently chiral macrocyclic oligothiophenes: easily accessible electrosensitive cavities with outstanding enantioselection performances. Chem Eur J. 2014;20:15298–302.

    Article  Google Scholar 

  27. Arnaboldi S, Benincori T, Cirilli R, Kutner W, Magni M, Mussini PR, et al. Inherently chiral electrodes: the tool for chiral voltammetry. Chem Sci. 2015;6:1706–11.

    Article  CAS  Google Scholar 

  28. Sannicolò S, Mussini PR, Benincori T, Martinazzo R, Arnaboldi S, Appoloni G, et al. Inherently chiral spider-like oligothiophenes. Chem Eur J. 2016. doi:10.1002/chem.201504899.

    Google Scholar 

  29. Sannicolò F, Rizzo S, Benincori T, Kutner W, Noworyta K, Sobczak JW, et al. An effective multipurpose building block for 3D electropolymerisation: 2,2′-Bis(2,2′-bithiophene-5-yl)-3,3′bithianaphthene. Electrochim Acta. 2010;55:8352–64.

    Article  Google Scholar 

  30. Park S, Oh H, Kang M, Cho H, Prasad JB, Won J, et al. The structure–activity relationship of the series of non-peptide small antagonists for p56lck SH2 domain. Bioorg Med Chem. 2007;15:3938–50.

    Article  CAS  Google Scholar 

  31. Bruce Martin R, Edsall JT, Wetlaufer DB, Hollingworth B. A complete ionization scheme for tyrosine, and the ionization constant of some tyrosine derivatives. J Biol Chem. 1958;233:1429–35.

    Google Scholar 

  32. Bruce Martin R. Zwitterion formation upon deprotonation in L-3,4-dihydroxyphenylalanine and other phenolic amines. J Phys Chem. 1971;75:2657–61.

    Article  Google Scholar 

  33. De Levie R. Aqueous acid–base equilibria and titrations. Oxford: Oxford University Press; 1999.

    Google Scholar 

  34. Bergamini MF, Santos AL, Stradiotto NR, Zanoni MVB. A disposable electrochemical sensor for the rapid determination of levodopa. J Pharm Biomed Anal. 2005;39:54–9.

    Article  CAS  Google Scholar 

  35. Eslami M, Namazian M, Zare HR. Electrochemical behaviour of 3,4-dihydroxyphenylalanine in aqueous solution. Electrochim Acta. 2013;88:543–55.

    Article  CAS  Google Scholar 

  36. Eslami M, Zare HR, Namazian M. Thermodynamic parameters of electrochemical oxidation of L-DOPA: experimental and theoretical studies. J Phys Chem B. 2012;116:12552–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and funding information

The financial support of Fondazione Cariplo (Materiali avanzati 2011–0417 “Inherently Chiral Multifunctional Conducting Polymers”) is gratefully acknowledged.

The work on inherently chiral materials is also being developed in the context of the SmartMatLab Project at Dipartimento di Chimica, Università degli Studi di Milano, supported by Regione Lombardia (EU FESR and FSE), Fondazione Cariplo, Università degli Studi di Milano, and CNR ISTM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serena Arnaboldi or Patrizia R. Mussini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Chemical Sensing Systems with guest editors Maria Careri, Marco Giannetto, and Renato Seeber.

An erratum to this article is available at http://dx.doi.org/10.1007/s00216-016-0103-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnaboldi, S., Benincori, T., Cirilli, R. et al. “Inherently chiral” thiophene-based electrodes at work: a screening of enantioselection ability toward a series of pharmaceutically relevant phenolic or catecholic amino acids, amino esters, and amine. Anal Bioanal Chem 408, 7243–7254 (2016). https://doi.org/10.1007/s00216-016-9852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9852-x

Keywords

Navigation