Skip to main content
Log in

An investigation on the chemical structure of nitrogen and sulfur codoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly fluorescent nitrogen and sulfur codoped carbon nanoparticles (N,S-CNP) sample was obtained by microwave-assisted pyrolysis of citric acid and L-cysteine. After being purified by dialysis, the complexity and chemical composition of N,S-CNP were evaluated by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) as well as by UPLC coupled with ultraviolet (UV) absorption and fluorescence detection (UPLC-UV/FLD) methods. By using the high-resolution UPLC separation, the N,S-CNP were well fractionated into six fractions within 3.5 min. Based on high-accuracy MS and tandem (MS/MS) analyses, the N,S-CNP species were revealed to display various chemical formulas, including (C12H16N2O7S2) n , (C9H13NO8S) n , (C18H20N2O14S2) n , (C18H20N2O12S2) n , (C9H11NO5S) n , and (C9H11NO7S) n . More importantly, our study disclosed unambiguously for the first time that the N,S-CNP species exist as supramolecular clusters with their individual monomer units linked together through noncovalent bonding forces. By using UPLC-UV/FLD analysis, the spectral characteristics of each N,S-CNP species were revealed. Each individual CNP species possesses its unique absorption and PL properties with absorption bands that are redshifted, whereas its emission bands are blueshifted with its elution order. This work highlights the merit of UPLC-MS together with UPLC-UV/FLD to investigate the chemical composition and the spectral properties of each individual N,S-CNP species. It is anticipated that our proposed methodology will open up a new venue in optimizing experimental conditions for producing specific N,S-CNP species of desired composition.

Carbon nanoparticles synthesized by microwave-assisted pyrolysis of citric acid and L-cysteine exist as supramolecular clusters with their individual monomer units linked together by noncovalent interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    Article  CAS  Google Scholar 

  2. Huang JJ, Zhong ZF, Rong MZ, Zhou X, Chen XD, Zhang MQ. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon. 2014;70:190–8.

    Article  CAS  Google Scholar 

  3. Thakur M, Pandey S, Mewada A, Patil V, Khade M, Goshi E, et al. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Deliv. 2014;2014:282193.

  4. Huang H, Li C, Zhu S, Wang H, Chen C, Wang Z, et al. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications. Langmuir. 2014;30:13542–8.

    Article  CAS  Google Scholar 

  5. Xu J, Zhou Y, Cheng G, Dong M, Liu S, Huang C. Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties. Luminescence. 2014;30:411–5.

    Article  Google Scholar 

  6. Simões EF, da Silva JC, Leitão JM. Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal Chim Acta. 2014;852:174–80.

    Article  Google Scholar 

  7. Gonçalves H, Jorge PAS, Fernandes JRA, Esteves da Silva JCG. Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor Actuator B. 2010;145:702–7.

    Article  Google Scholar 

  8. Costas-Mora I, Romero V, Lavilla I, Bendicho C. In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection. Anal Chem. 2014;86:4536–43.

    Article  CAS  Google Scholar 

  9. Xu Y, Wu M, Feng XZ, Yin XB, He XW, Zhang YK. Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chem Eur J. 2013;19:6282–8.

    Article  CAS  Google Scholar 

  10. Jiang J, He Y, Li S, Cui H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic PL property, and intense chemiluminescence enhancement. Chem Commun. 2012;48:9634–6.

    Article  CAS  Google Scholar 

  11. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, et al. Water soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010;49:4430–4.

    Article  CAS  Google Scholar 

  12. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52:3953–7.

    Article  CAS  Google Scholar 

  13. Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed. 2012;51:12215–8.

    Article  CAS  Google Scholar 

  14. Wang J, Wang CF, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed. 2012;51:9297–301.

    Article  CAS  Google Scholar 

  15. Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, et al. Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun. 2015;51:2950–3.

    Article  CAS  Google Scholar 

  16. Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw SV, Wang Y, et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano. 2013;7:11234–41.

    Article  CAS  Google Scholar 

  17. Li CX, Yu C, Wang CF, Chen S. Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. J Mater Sci. 2013;48:6307–11.

    Article  CAS  Google Scholar 

  18. Xu XY, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7.

    Article  CAS  Google Scholar 

  19. Chang HC, Chen K, Kwok S. Nanodiamond as a possible carrier of extended red emission. Astrophys J. 2006;639:L63–6.

    Article  CAS  Google Scholar 

  20. Chowdhury D, Gogoi N, Majumdar G. Fluorescent carbon dots obtained from chitosan gel. RSC Adv. 2012;2:12156–9.

    Article  CAS  Google Scholar 

  21. Ray SC, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113:18546–51.

    Article  CAS  Google Scholar 

  22. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21:2803–9.

    Article  CAS  Google Scholar 

  23. Bottini M, Mustelin T. Carbon materials: nanosynthesis by candlelight. Nat Nanotechnol. 2007;2:599–600.

    Article  CAS  Google Scholar 

  24. Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: synthesis, properties, and applications. J Mater Chem. 2012;22:24230–53.

    Article  CAS  Google Scholar 

  25. Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun. 2012;48:8835–7.

    Article  CAS  Google Scholar 

  26. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun. 2010;46:3681–3.

    Article  CAS  Google Scholar 

  27. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dots. Small. 2008;4:455–8.

    Article  CAS  Google Scholar 

  28. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater. 2008;20:4539–41.

    Article  CAS  Google Scholar 

  29. Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano. 2009;3:2367–75.

    Article  CAS  Google Scholar 

  30. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, et al. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon. 2015;83:173–9.

    Article  CAS  Google Scholar 

  31. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127:17604–5.

    Article  CAS  Google Scholar 

  32. Wei XM, Xu Y, Li YH, Yin XB, He XW. Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Adv. 2014;4:44504–8.

    Article  CAS  Google Scholar 

  33. Pandey S, Mewada A, Oza G, Thakur M, Mishra N, Sharon M, et al. Synthesis and centrifugal separation of fluorescent carbon dots at room temperature. Nanosci Nanotechnol Lett. 2013;5:775–9.

    Article  CAS  Google Scholar 

  34. Barman MK, Jana B, Bhattacharyya S, Patra A. Photophysical properties of doped carbon dots (N, P, and B) and their influence on electron/hole transfer in carbon dots−nickel (II) phthalocyanine conjugates. J Phys Chem C. 2014;118:20034–41.

    Article  CAS  Google Scholar 

  35. Barati A, Shamsipur M, Arkan E, Hosseinzadeh L, Abdollahi H. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mater Sci Eng C. 2015;47:325–32.

    Article  CAS  Google Scholar 

  36. Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun. 2012;48:407–9.

  37. Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-codoped carbon dots with tunable luminescence properties. Carbon. 2013;64:424–34.

    Article  CAS  Google Scholar 

  38. Wang W, Lu YC, Huang H, Wang AJ, Chen JR, Feng JJ. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity. Sensor Actuator B. 2014;202:741–7.

    Article  CAS  Google Scholar 

  39. Xu ZQ, Yang LY, Fan XY, Jin JC, Mei J, Peng W, et al. Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon. 2014;66:351–60.

    Article  CAS  Google Scholar 

  40. Wang W, Li Y, Cheng L, Cao Z, Liu W. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B. 2014;2:46–8.

    Article  CAS  Google Scholar 

  41. Wang Q, Zhang S, Ge H, Tian G, Cao N, Li Y. A fluorescent turn-off/on method based on carbon dots as fluorescent probes for the sensitive determination of Pb2+ and pyrophosphate in an aqueous solution. Sensor Actuator B. 2015;207:25–33.

    Article  CAS  Google Scholar 

  42. Baruah U, Gogoi N, Majumdar G, Chowdhury D. β-Cyclodextrin and calix[4]arene-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohydr Polym. 2015;117:377–83.

    Article  CAS  Google Scholar 

  43. Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang C. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon. 2015;82:87–95.

    Article  CAS  Google Scholar 

  44. Jin X, Sun X, Chen G, Ding L, Li Y, Liu Z, et al. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon. 2015;81:388–95.

    Article  CAS  Google Scholar 

  45. Liu L, Feng F, Hu Q, Paau MC, Liu Y, Chen Z, et al. Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles. Electrophoresis. 2015;36:2110–9.

    Article  CAS  Google Scholar 

  46. Gong X, Hu Q, Paau MC, Zhang Y, Zhang L, Shuang S, et al. High-performance liquid chromatographic and mass spectrometric analysis of fluorescent carbon nanodots. Talanta. 2014;129:529–38.

    Article  CAS  Google Scholar 

  47. Vinci JC, Colón LA. Fractionation of carbon-based nanomaterials by anion-exchange HPLC. Anal Chem. 2012;84:1178–83.

    Article  CAS  Google Scholar 

  48. Vinci JC, Ferrer IM, Seedhouse SJ, Bourdon AK, Reynard JM, Foster BA, et al. Hidden properties of carbon dots revealed after HPLC fractionation. J Phys Chem Lett. 2013;4:239–43.

    Article  CAS  Google Scholar 

  49. Vinci JC, Colón LA. Surface chemical composition of chromatographically fractionated graphite nanofiber-derived carbon dots. Microchem J. 2013;110:660–4.

    Article  CAS  Google Scholar 

  50. Baker JS, Colón LA. Influence of buffer composition on the capillary electrophoretic separation of carbon nanoparticles. J Chromatogr A. 2009;1216:9048–54.

    Article  CAS  Google Scholar 

  51. Muller MB, Quirino JP, Nesterenko PN, Haddad PR, Gambhir S, Li D, et al. Capillary zone electrophoresis of graphene oxide and chemically converted grapheme. J Chromatogr A. 2010;1217:7593–7.

    Article  Google Scholar 

  52. Hu Q, Paau MC, Zhang Y, Chan W, Gong X, Zhang L, et al. Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. J Chromatogr A. 2013;1304:234–40.

    Article  CAS  Google Scholar 

  53. Gong X, Hu Q, Paau MC, Zhang Y, Shuang S, Dong C, et al. Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale. 2014;6:8162–70.

    Article  CAS  Google Scholar 

  54. Hu Q, Paau MC, Choi MMF, Zhang Y, Gong X, Zhang L, et al. Better understanding of carbon nanoparticles via high-performance liquid chromatography-fluorescence detection and mass spectrometry. Electrophoresis. 2014;35:2454–62.

    Article  CAS  Google Scholar 

  55. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots codoped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52:7800–4.

    Article  CAS  Google Scholar 

  56. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JM. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24:10560–4.

    Article  CAS  Google Scholar 

  57. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, et al. Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010;22:505–9.

    Article  CAS  Google Scholar 

  58. Wang X, Cao L, Yang ST, Lu F, Meziani MJ, Tian L, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed. 2010;49:5310–4.

    Article  CAS  Google Scholar 

  59. Anilkumar P, Wang X, Cao L, Sahu S, Liu JH, Wang P, et al. Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale. 2011;3:2023–7.

    Article  CAS  Google Scholar 

  60. Sun YP, Wang X, Lu F, Cao L, Meziani MJ, Luo PG, et al. Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C. 2008;112:18295–8.

    Article  CAS  Google Scholar 

  61. Cooks RG, Zhang D, Koch KJ, Gozzo FC, Eberlin MN. Chiroselective self-directed octamerization of serine: implications for homochirogenesis. Anal Chem. 2001;73:3646–55.

    Article  CAS  Google Scholar 

  62. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater. 2014;26:5429–79.

    Article  CAS  Google Scholar 

  63. Watt AAR, Bothma JP, Meredith P. The supramolecular structure of melanin. Soft Matter. 2009;5:3754–60.

    Article  CAS  Google Scholar 

  64. Li Y, Liu J, Wang Y, Chan HW, Wang L, Chan W. Mass spectrometric and spectrophotometric analyses reveal an alternative structure and a new formation mechanism for melanin. Anal Chem. 2015;87:7958–63.

    Article  CAS  Google Scholar 

  65. Yao ZP, Wan TS, Kwong KP, Che CT. Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. Anal Chem. 2000;72:5383–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Hong Kong University of Science and Technology for a Startup Funding (R9310). The authors express their sincere thanks to the Provost Office of the Hong Kong University of Science and Technology for providing a post-doctoral Fellowship to Qin Hu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial nor non-financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.12 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Meng, X. & Chan, W. An investigation on the chemical structure of nitrogen and sulfur codoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 408, 5347–5357 (2016). https://doi.org/10.1007/s00216-016-9631-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9631-8

Keywords

Navigation