Skip to main content
Log in

Paper membrane-based SERS platform for the determination of glucose in blood samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm−1 which is attributed to B–OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frank EA, Shubha MC, D’Souza CJM (2012) Blood glucose determination: plasma or serum? J Clin Lab Anal 26:317–320. doi:10.1002/jcla.21524

    Article  CAS  Google Scholar 

  2. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010) Hydrodynamic blood plasma separation in microfluidic channels. Microfluid Nanofluid 8:105–114. doi:10.1007/s10404-009-0450-5

    Article  CAS  Google Scholar 

  3. Minnikanti S, Gangopadhyay A, Reyes D (2014) Polyelectrolyte multilayers in microfluidic systems for biological applications. Polym (Basel) 6:2100–2115. doi:10.3390/polym6082100

    Article  Google Scholar 

  4. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57. doi:10.1039/b611455e

    Article  CAS  Google Scholar 

  5. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058

    Article  CAS  Google Scholar 

  6. Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929. doi:10.1039/b502930a

    Article  CAS  Google Scholar 

  7. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880. doi:10.1039/b516401j

    Article  CAS  Google Scholar 

  8. Choi S, Song S, Choi C, Park J-K (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538. doi:10.1039/b705203k

    Article  CAS  Google Scholar 

  9. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239. doi:10.1039/b509386d

    Article  CAS  Google Scholar 

  10. VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771. doi:10.1021/ac060042r

    Article  CAS  Google Scholar 

  11. Chen X, Cui DF, Liu CC, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sensors Actuators B Chem 130:216–221. doi:10.1016/j.snb.2007.07.126

    Article  CAS  Google Scholar 

  12. Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878. doi:10.1039/c0lc00633e

    Article  CAS  Google Scholar 

  13. Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392. doi:10.1039/c2lc21299d

    Article  CAS  Google Scholar 

  14. Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707. doi:10.1021/ac800112r

    Article  CAS  Google Scholar 

  15. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces 76:564–570. doi:10.1016/j.colsurfb.2009.12.023

    Article  CAS  Google Scholar 

  16. Lu R, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500. doi:10.1002/elps.200800563

    Article  CAS  Google Scholar 

  17. Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by Wax printing. Anal Chem 82:329–335. doi:10.1021/ac9020193

    Article  Google Scholar 

  18. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. doi:10.1021/ar300314s

    Article  CAS  Google Scholar 

  19. Hartmeier W (1988) Immobilized biocatalysts. doi: 10.1007/978-3-642-73364-2

  20. Han XX, Jia HY, Wang YF, Lu ZC, Wang CX, Xu WQ, Zhao B, Ozaki Y (2008) Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering. Anal Chem 80:2799–2804. doi:10.1021/ac702390u

    Article  CAS  Google Scholar 

  21. Hou SY, Chen HK, Cheng HC, Huang CY (2007) Development of zeptomole and attomolar detection sensitivity of biotin-peptide using a dot-blot goldnanoparticle immunoassay. Anal Chem 79:980–985. doi:10.1021/ac061507g

    Article  CAS  Google Scholar 

  22. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227. doi:10.1016/j.bios.2009.05.006

    Article  CAS  Google Scholar 

  23. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. doi:10.1063/1.3687398

    Google Scholar 

  24. Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489. doi:10.1021/ja043623b

    Article  CAS  Google Scholar 

  25. Lyandres O, Shah NC, Yonzon CR, Walsh JT, Glucksberg MR, Van Duyne RP (2005) Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal Chem 77:6134–6139. doi:10.1021/ac051357u

    Article  CAS  Google Scholar 

  26. Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085. doi:10.1039/c2cs35118h

    Article  CAS  Google Scholar 

  27. Liu GL, Lee LP (2005) Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett. doi:10.1063/1.2031935

    Google Scholar 

  28. Wang M, Benford M, Jing N, Coté G, Kameoka J (2009) Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluid Nanofluid 6:411–417. doi:10.1007/s10404-008-0397-y

    Article  CAS  Google Scholar 

  29. Lim C, Hong J, Chung BG, deMello AJ, Choo J (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135:837–844. doi:10.1039/b919584j

    Article  CAS  Google Scholar 

  30. Yu WW, White IM (2010) Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630. doi:10.1021/ac102475k

    Article  CAS  Google Scholar 

  31. Rahman MM, Ahammad AJ, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886. doi:10.3390/s100504855

    Article  CAS  Google Scholar 

  32. Al-Ogaidi I, Gou H, Al-kazaz AKA, Aguilar ZP, Melconian AK, Zheng P, Wu N (2014) A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal Chim Acta 811:76–80. doi:10.1016/j.aca.2013.12.009

    Article  CAS  Google Scholar 

  33. Baker GA, Desikan R, Thundat T (2008) Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. Anal Chem 80:4860–4865. doi:10.1021/ac702588b

    Article  CAS  Google Scholar 

  34. Torun Ö, Dudak FC, Baş D, Tamer U, Boyaci IH (2009) Thermodynamic analysis of the interaction between 3-aminophenylboronic acid and monosaccharides for development of biosensor. Sensors Actuators B Chem 140:597–602. doi:10.1016/j.snb.2009.05.004

    Article  CAS  Google Scholar 

  35. Çiftçi H, Tamer U, Teker MŞ, Pekmez NÖ (2013) An enzyme free potentiometric detection of glucose based on a conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiophene). Electrochim Acta 90:358–365. doi:10.1016/j.electacta.2012.12.019

    Article  Google Scholar 

  36. Torul H, Çiftçi H, Dudak FC, Adıgüzel Y, Kulah H, Boyacı İH, Tamer U (2014) Glucose determination based on a two component self-assembled monolayer functionalized surface-enhanced Raman spectroscopy (SERS) probe. Anal Methods 6:5097. doi:10.1039/c4ay00559g

    Article  CAS  Google Scholar 

  37. Jiang H, Weng X, Chon CH, Wu X, Li D (2011) A microfluidic chip for blood plasma separation using electro-osmotic flow control. J Micromech Microeng 21:085019. doi:10.1088/0960-1317/21/8/085019

    Article  Google Scholar 

  38. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing a simple micropatterning process for paper based microfluidics.pdf. 81:7091–7095

  39. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251. doi:10.1039/c3lc50169h

    Article  CAS  Google Scholar 

  40. Rycenga M, McLellan JM, Xia Y (2008) A SERS study of the molecular structure of alkanethiol monolayers on Ag nanocubes in the presence of aqueous glucose. Chem Phys Lett 463:166–171. doi:10.1016/j.cplett.2008.08.062

    Article  CAS  Google Scholar 

  41. Kanayama N, Kitano H (2000) Interfacial recognition of sugars by boronic acid-carrying self-assembled monolayer. Langmuir 16:577–583. doi:10.1021/la990182e

    Article  CAS  Google Scholar 

  42. Erdogdu Y, Tahir Güllüoǧlu M, Kurt M (2009) DFT, FT-Raman, FT-IR and NMR studies of 2-fluorophenylboronic acid. J Raman Spectrosc 40:1615–1623. doi:10.1002/jrs.2309

    Article  CAS  Google Scholar 

  43. Kurt M, Raci Sertbakan T, Özduran M, Karabacak M (2009) Infrared and Raman spectrum, molecular structure and theoretical calculation of 3,4-dichlorophenylboronic acid. J Mol Struct 921:178–187. doi:10.1016/j.molstruc.2008.12.048

    Article  CAS  Google Scholar 

  44. Manikantan Syamala Kiran, Tamitake Itoh*, Ken-ichi Yoshida, Nagako Kawashima VB, MI (2010) Selective detection of hba1c using surface enhanced resonance raman spectroscopy. Anal Chem 82:1342–1348. doi:10.1021/ac902364h

  45. Kong KV, Lam Z, On Lau WK, Leong WK, Olivo M (2013) A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J Am Chem Soc 135:18028–18031. doi:10.1021/ja409230g

  46. Alissa Z, Damon W, Yichuan L, Gongming W, Xuan Y, Boaz V, Bakthan S, Claire G, Yat L (2012) Novel molecular specific detection of glucose using a raman probe molecule with surface enhanced raman scattering. Sci Adv Mater 4(10):1047–1054. doi:10.1166/sam.2012.1400

Download references

Acknowledgments

The authors acknowledge The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number Cost MP 1205-111T983 for funding.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Tamer.

Additional information

Published in the topical collection Nanospectroscopy with guest editor Mustafa Culha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torul, H., Çiftçi, H., Çetin, D. et al. Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal Bioanal Chem 407, 8243–8251 (2015). https://doi.org/10.1007/s00216-015-8966-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8966-x

Keywords

Navigation