Skip to main content

Advertisement

Log in

Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review focuses on recent advances in the development of functionalizable antifouling coatings and their applications in label-free optical biosensors. Approaches to the development of antifouling coatings, ranging from self-assembled monolayers and PEG derivatives to ultra-low-fouling polymer brushes, are reviewed. Methods of preparation and characterization of antifouling coatings and the functionalization of antifouling coatings with bioreceptors are reviewed, and the effect of functionalization on the fouling properties of biofunctional coating is discussed. Special attention is given to biofunctional coatings for label-free bioanalysis of blood plasma and serum for medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ab:

Antibody

ALCAM:

Activated leukocyte cell adhesion molecule

ANACH:

Anachelin

BSA:

Bovine serum albumin

CEA:

Carcinoembryonic antigen

CTAs:

Chain-transfer agents

DOPA:

Dopamine

DSC:

Disuccinimidyl carbonate

EDC:

Ethyl(dimethylaminopropyl) carbodiimide

Fbg:

Fibrinogen

FTIR:

Fourier-transform infrared spectroscopy

hCG:

Human chorionic gonadotropin

HSA:

Human serum albumin

IgG:

Immunoglobulin G

LOD:

Limit of detection

LSPR:

Localized surface plasmon resonance

Lys:

Lysozyme

NHS:

N-Hydroxysuccinimide

OEG:

Oligo(ethylene glycol)

OWLS:

Optical-waveguide light-mode spectroscopy

PBS:

Phosphate-buffered saline

pCBAA:

Carboxybetaine acrylamide

pCBMA:

Carboxybetaine methacrylate

PEG:

Poly(ethylene glycol)

pHEMA:

Poly(2-hydroxyethyl methacrylate)

pHOEGMA:

Poly(oligo(ethylene glycol) methacrylate)

pHPM:

Poly(3-hydroxypropyl methacrylate)

pHPMA:

Poly(N-(2-hydroxypropyl) methacrylamide)

PLL:

Poly(l-lysine)

pMeOEGMA:

Poly(oligo(ethylene glycol) methyl ether methacrylate)

pMPC:

Poly(methacryloyloxyethyl phosphorylcholine

pSBMA:

Poly(sulfobetaine methacrylate)

RAFT:

Reversible addition-fragmentation transfer polymerization

SAMs:

Self-assembled monolayers

SET-LRP:

Electron-transfer living radical polymerization

SI-ATRP:

Surface-initiated atom-transfer radical polymerization

SPR:

Surface plasmon resonance

References

  1. Sun Y-S (2013) Optical biosensors for label-free detection of biomolecular interactions. Instrum Sci Technol 42(2):109–127

    Google Scholar 

  2. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26

    CAS  Google Scholar 

  3. Cretich M, Damin F, Pirri G, Chiari M (2006) Protein and peptide arrays: recent trends and new directions. Biomol Eng 23(2–3):77–88

    CAS  Google Scholar 

  4. Phelan ML, Nock S (2003) Generation of bioreagents for protein chips. Proteomics 3(11):2123–2134

    CAS  Google Scholar 

  5. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    CAS  Google Scholar 

  6. Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527

    CAS  Google Scholar 

  7. Ligler FS, Taitt CAR (2002) Optical biosensors : present and future. Elsevier, Amsterdam Oxford

    Google Scholar 

  8. Rodriguez-Emmenegger C, Brynda E, Riedel T, Houska M, Subr V, Alles AB, Hasan E, Gautrot JE, Huck WT (2011) Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. Macromol Rapid Commun 32(13):952–957

    CAS  Google Scholar 

  9. Rodriguez-Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB (2009) Interaction of blood plasma with antifouling surfaces. Langmuir 25(11):6328–6333

    CAS  Google Scholar 

  10. Rodriguez-Emmenegger C, Kylian O, Houska M, Brynda E, Artemenko A, Kousal J, Alles AB, Biederman H (2011) Substrate-independent approach for the generation of functional protein resistant surfaces. Biomacromolecules 12(4):1058–1066

    CAS  Google Scholar 

  11. Klok HA, Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527

    Google Scholar 

  12. Blattler TM, Pasche S, Textor M, Griesser HJ (2006) High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir 22(13):5760–5769

    Google Scholar 

  13. Zhang Z, Chen S, Jiang S (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7(12):3311–3315

    CAS  Google Scholar 

  14. Calvo KR, Liotta LA, Petricoin EF (2005) Clinical proteomics: from biomarker discovery and cell signaling profiles to individualized personal therapy. Biosci Rep 25(1–2):107–125

    CAS  Google Scholar 

  15. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    CAS  Google Scholar 

  16. Bozukova D, Pagnoulle C, De Pauw-Gillet MC, Ruth N, Jerome R, Jerome C (2008) Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate). Langmuir 24(13):6649–6658

    CAS  Google Scholar 

  17. de Feijter JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the ad-sorption of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759–1772

    Google Scholar 

  18. Tumolo T, Angnes L, Baptista MS (2004) Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal Biochem 333(2):273–279

    CAS  Google Scholar 

  19. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sensors Actuators B Chem 61(1–3):100–127

    CAS  Google Scholar 

  20. Hsu SH, Huang YT (2005) A novel Mach-Zehnder interferometer based on dual-ARROW structures for sensing applications. J Lightwave Technol 23(12):4200–4206

    Google Scholar 

  21. Schmitt K, Schirmer B, Hoffmann C, Brandenburg A, Meyrueis P (2007) Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens Bioelectron 22(11):2591–2597

    CAS  Google Scholar 

  22. Brandenburg A, Henninger R (1994) Integrated optical young interferometer. Appl Opt 33(25):5941–5947

    CAS  Google Scholar 

  23. Schneider BH, Edwards JG, Hartman NF (1997) Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. Clin Chem 43(9):1757–1763

    CAS  Google Scholar 

  24. Schneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Optical chip immunoassay for hCG in human whole blood. Biosens Bioelectron 15(11–12):597–604

    CAS  Google Scholar 

  25. Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation. Biosens Bioelectron 8(7–8):347–354

    CAS  Google Scholar 

  26. Goddard NJ, Pollardknight D, Maule CH (1994) Real-time biomolecular interaction analysis using the resonant mirror sensor. Analyst 119(4):583–588

    CAS  Google Scholar 

  27. Clerc D, Lukosz W (1997) Direct immunosensing with an integrated-optical output grating coupler. Sensors Actuators B Chem 40(1):53–58

    CAS  Google Scholar 

  28. Andrade JD (ed) (1985) Surface and interfacial aspects of biomedial polymers. Plenun Press, New York

    Google Scholar 

  29. Andrade JD, Hlady VL, Vanwagenen RA (1984) Effects of plasma-protein adsorption on protein conformation and activity. Pure Appl Chem 56(10):1345–1350

    CAS  Google Scholar 

  30. Schmaier AH, Silver L, Adams AL, Fischer GC, Munoz PC, Vroman L, Colman RW (1984) The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb Res 33(1):51–67

    CAS  Google Scholar 

  31. Vroman L (2008) Finding seconds count after contact with blood (and that is all I did). Colloids Surf B: Biointerfaces 62(1):1–4

    CAS  Google Scholar 

  32. Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    CAS  Google Scholar 

  33. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9(5):1357–1361

    CAS  Google Scholar 

  34. Vaisocherova H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80(20):7894–7901

    CAS  Google Scholar 

  35. Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909

    CAS  Google Scholar 

  36. Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15(7):2525–2533

    CAS  Google Scholar 

  37. Halperin A, Fragneto G, Schollier A, Sferrazza M (2007) Primary versus ternary adsorption of proteins onto PEG brushes. Langmuir 23(21):10603–10617

    CAS  Google Scholar 

  38. Halperin A, Kröger M (2009) Ternary protein adsorption onto brushes: strong versus weak. Langmuir 25(19):11621–11634

    CAS  Google Scholar 

  39. Halperin A, Kröger M (2011) Collapse of thermoresponsive brushes and the tuning of protein adsorption. Macromolecules 44(17):6986–7005

    CAS  Google Scholar 

  40. Unsworth LD, Tun Z, Sheardown H, Brash JL (2005) Chemisorption of thiolated poly(ethylene oxide) to gold: surface chain densities measured by ellipsometry and neutron reflectometry. J Colloid Interface Sci 281(1):112–121

    CAS  Google Scholar 

  41. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23):5283–5293

    CAS  Google Scholar 

  42. Morra M (2000) On the molecular basis of fouling resistance. J Biomater Sci Polym Ed 11(6):547–569

    CAS  Google Scholar 

  43. Vaisocherova H, Sevcu V, Adam P, Spackova B, Hegnerova K, de los Santos Pereira A, Rodriguez-Emmenegger C, Riedel T, Houska M, Brynda E, Homola J (2014) Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosens Bioelectron 51:150–157

    CAS  Google Scholar 

  44. Chen S, Liu L, Jiang S (2006) Strong resistance of oligo(phosphorylcholine) self-assembled monolayers to protein adsorption. Langmuir 22(6):2418–2421

    CAS  Google Scholar 

  45. Benesch J, Svedhem S, Svensson SCT, Valiokas R, Liedberg B, Tengvall P (2001) Protein adsorption to oligo(ethylene glycol) self-assembled monolayers: experiments with fibrinogen, heparinized plasma, and serum. J Biomater Sci Polym Ed 12(6):581–597

    CAS  Google Scholar 

  46. Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17(9):2841–2850

    CAS  Google Scholar 

  47. Lee BS, Chi YS, Lee KB, Kim YG, Choi IS (2007) Functionalization of poly(oligo(ethylene glycol) methacrylate) films on gold and Si/SiO2 for immobilization of proteins and cells: SPR and QCM studies. Biomacromolecules 8(12):3922–3929

    CAS  Google Scholar 

  48. Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM (2000) Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 122(34):8303–8304

    CAS  Google Scholar 

  49. Lin P-C, Weinrich D, Waldmann H (2010) Protein biochips: oriented surface immobilization of proteins. Macromol Chem Phys 211(2):136–144

    CAS  Google Scholar 

  50. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789

    CAS  Google Scholar 

  51. Albala JS, Humphery-Smith I (eds) (2003) Protein arrays, biochips and proteomics. The next phase of genomic discovery. Marcel Dekker, Inc., New York

    Google Scholar 

  52. Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem 47(50):9618–9647

    CAS  Google Scholar 

  53. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82(15):6401–6408

    CAS  Google Scholar 

  54. Song HY, Zhou X, Hobley J, Su X (2011) Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir. doi:10.1021/la202734f

    Google Scholar 

  55. Dunne L, Daly S, Baxter A, Haughey S, O’Kennedy R (2005) Surface plasmon resonance-based immunoassay for the detection of aflatoxin B1 using single-chain antibody fragments. Spectrosc Lett 38(3):229–245

    CAS  Google Scholar 

  56. Orlova A, Magnusson M, Eriksson TLJ, Nilsson M, Larsson B, Höidén-Guthenberg I, Widström C, Carlsson J, Tolmachev V, Ståhl S, Nilsson FY (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66(8):4339–4348

    CAS  Google Scholar 

  57. Renberg B, Nordin J, Merca A, Uhlén M, Feldwisch J, Nygren P-Å, Eriksson Karlström A (2006) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J Proteome Res 6(1):171–179

    Google Scholar 

  58. Wang Z, Wilkop T, Xu D, Dong Y, Ma G, Cheng Q (2007) Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Anal Bioanal Chem 389(3):819–825

    CAS  Google Scholar 

  59. Balamurugan S, Obubuafo A, Soper S, Spivak D (2008) Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 390(4):1009–1021

    CAS  Google Scholar 

  60. Johnsson B, Löfås S, Lindquist G, Edström A, Müller Hillgren RM, Hansson A (1995) Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J Mol Recognit JMR 8(1–2):125–131

    CAS  Google Scholar 

  61. Kroger D, Liley M, Schiweck W, Skerra A, Vogel H (1999) Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes. Biosens Bioelectron 14(2):155–161

    CAS  Google Scholar 

  62. Prieto-Simin B, Campas M, Marty JL (2008) Biomolecule immobilization in biosensor development: tailored strategies based on affinity interactions. Protein Pept Lett 15(8):757–763

    CAS  Google Scholar 

  63. Sethi D, Gandhi RP, Kuma P, Gupta KC (2009) Chemical strategies for immobilization of oligonucleotides. Biotechnol J 4(11):1513–1529

    CAS  Google Scholar 

  64. Diamanti S, Arifuzzaman S, Elsen A, Genzer J, Vaia RA (2008) Reactive patterning via post-functionalization of polymer brushes utilizing disuccinimidyl carbonate activation to couple primary amines. Polymer 49(17):3770–3779

    CAS  Google Scholar 

  65. Trmcic-Cvitas J, Hasan E, Ramstedt M, Li X, Cooper MA, Abell C, Huck WTS, Gautrot JE (2009) Biofunctionalized protein resistant oligo(ethylene glycol)-derived polymer brushes as selective immobilization and sensing platforms. Biomacromolecules 10(10):2885–2894

    CAS  Google Scholar 

  66. Ferrero VEV, Andolfi L, Di Nardo G, Sadeghi SJ, Fantuzzi A, Cannistraro S, Gilardi G (2008) Protein and electrode engineering for the covalent immobilization of P450 BMP on gold. Anal Chem 80(22):8438–8446

    CAS  Google Scholar 

  67. Inoue Y, Ishihara K (2010) Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Colloids Surf B 81(1):350–357

    CAS  Google Scholar 

  68. Gautrot JE, Huck WTS, Welch M, Ramstedt M (2010) Protein-resistant NTA-functionalized polymer brushes for selective and stable immobilization of histidine-tagged proteins. ACS Appl Mater Interfaces 2(1):193–202

    CAS  Google Scholar 

  69. Keller TA, Duschl C, Kröger D, Sévin-Landais A-F, Vogel H, Cervigni SE, Dumy P (1995) Reversible oriented immobilization of histidine-tagged proteins on gold surfaces using a chelator thioalkane. Supramol Sci 2(3–4):155–160

    CAS  Google Scholar 

  70. Zhen GL, Falconnet D, Kuennemann E, Voros J, Spencer ND, Textor M, Zurcher S (2006) Nitrilotriacetic acid functionalized graft copolymers: a polymeric interface for selective and reversible binding of histidine-tagged proteins. Adv Funct Mater 16(2):243–251

    CAS  Google Scholar 

  71. Johnson CP, Jensen IE, Prakasam A, Vijayendran R, Leckband D (2003) Engineered protein A for the orientational control of immobilized proteins. Bioconjug Chem 14(5):974–978

    CAS  Google Scholar 

  72. Vijayendran RA, Leckband DE (2000) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal Chem 73(3):471–480

    Google Scholar 

  73. Wang Z, Jin G (2003) Feasibility of protein A for the oriented immobilization of immunoglobulin on silicon surface for a biosensor with imaging ellipsometry. J Biochem Biophys Methods 57(3):203–211

    CAS  Google Scholar 

  74. Chen Y-X, Triola G, Waldmann H (2011) Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins. Acc Chem Res 44(9):762–773. doi:10.1021/ar200046h

    CAS  Google Scholar 

  75. Colombo M, Sommaruga S, Mazzucchelli S, Polito L, Verderio P, Galeffi P, Corsi F, Tortora P, Prosperi D (2012) Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne–nitrone cycloaddition. Angew Chem Int Ed 51(2):496–499

    CAS  Google Scholar 

  76. Sobek J, Bartscherer K, Jacob A, Hoheisel JD, Angenendt P (2006) Microarray technology as a universal tool for high-throughput analysis of biological systems. Comb Chem High Throughput Screen 9(5):365–380

    CAS  Google Scholar 

  77. Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109(9):4025–4053

    CAS  Google Scholar 

  78. Chao H, Bautista DL, Litowski J, Irvin RT, Hodges RS (1998) Use of a heterodimeric coiled-coil system for biosensor application and affinity purification. J Chromatogr B Biomed Sci Appl 715(1):307–329

    CAS  Google Scholar 

  79. Duckworth BP, Xu J, Taton TA, Guo A, Distefano MD (2006) Site-specific, covalent attachment of proteins to a solid surface. Bioconjug Chem 17(4):967–974

    CAS  Google Scholar 

  80. Prime K, Whitesides G (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252(5009):1164–1167

    CAS  Google Scholar 

  81. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide) - a model system using self-assembled monolayers. J Am Chem Soc 115(23):10714–10721

    CAS  Google Scholar 

  82. Chapman RG, Ostuni E, Yan L, Whitesides GM (2000) Preparation of mixed Self-Assembled Monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups. Langmuir 16(17):6927–6936

    CAS  Google Scholar 

  83. Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE (1998) Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102(2):426–436

    CAS  Google Scholar 

  84. He Y, Chang Y, Hower JC, Zheng J, Chen S, Jiang S (2008) Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. Phys Chem Chem Phys 10(36):5539–5544

    CAS  Google Scholar 

  85. Herrwerth S, Eck W, Reinhardt S, Grunze M (2003) Factors that determine the protein resistance of oligoether self-assembled monolayers - internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J Am Chem Soc 125(31):9359–9366

    CAS  Google Scholar 

  86. Pertsin AJ, Grunze M (2000) Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 16(23):8829–8841

    CAS  Google Scholar 

  87. Riepl M, Östblom M, Lundström I, Svensson SCT, Denier van der Gon AW, Schäferling M, Liedberg B (2005) Molecular gradients: an efficient approach for optimizing the surface properties of biomaterials and biochips. Langmuir 21(3):1042–1050

    CAS  Google Scholar 

  88. Vanderah DJ, Arsenault J, La H, Gates RS, Silin V, Meuse CW, Valincius G (2003) Structural variations and ordering conditions for the self-assembled monolayers of HS(CH2CH2O)3-6CH3. Langmuir 19(9):3752–3756

    CAS  Google Scholar 

  89. Zolk M, Eisert F, Pipper J, Herrwerth S, Eck W, Buck M, Grunze M (2000) Solvation of oligo(ethylene glycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopy. Langmuir 16(14):5849–5852

    CAS  Google Scholar 

  90. Zheng J, Li L, Chen S, Jiang S (2004) Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 20(20):8931–8938

    CAS  Google Scholar 

  91. Zheng J, Li L, Tsao HK, Sheng YJ, Chen S, Jiang S (2005) Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophys J 89(1):158–166

    CAS  Google Scholar 

  92. Rodriguez-Emmenegger C, Houska M, Alles AB, Brynda E (2012) Surfaces resistant to fouling from biological fluids: towards bioactive surfaces for real applications. Macromol Biosci 12(10):1413–1422

    CAS  Google Scholar 

  93. Boozer C, Ladd J, Chen S, Jiang S (2006) DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal Chem 78(5):1515–1519

    CAS  Google Scholar 

  94. Boozer C, Ladd J, Chen S, Yu Q, Homola J, Jiang S (2004) DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Anal Chem 76(23):6967–6972

    CAS  Google Scholar 

  95. Springer T, Homola J (2012) Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Anal Bioanal Chem. doi:10.1007/s00216-012-6308-9

    Google Scholar 

  96. Vaisocherova H, Faca VM, Taylor AD, Hanash S, Jiang S (2009) Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens Bioelectron 24(7):2143–2148

    CAS  Google Scholar 

  97. Tegoulia VA, Rao WS, Kalambur AT, Rabolt JR, Cooper SL (2001) Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir 17(14):4396–4404

    CAS  Google Scholar 

  98. Chang Chung Y, Hong Chiu Y, Wei Wu Y, Tai Tao Y (2005) Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials 26(15):2313–2324

    Google Scholar 

  99. Deng L, Mrksich M, Whitesides GM (1996) Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein. J Am Chem Soc 118(21):5136–5137

    CAS  Google Scholar 

  100. Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16(24):9604–9608

    CAS  Google Scholar 

  101. Bandyopadhyay D, Prashar D, Luk YY (2011) Anti-fouling chemistry of chiral mono layers: enhancing biofilm resistance on racemic surface. Langmuir 27(10):6124–6131

    CAS  Google Scholar 

  102. Wyszogrodzka M, Haag R (2009) Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance. Biomacromolecules 10(5):1043–1054

    CAS  Google Scholar 

  103. Chelmowski R, Koster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, Metzler-Nolte N, Terfort A, Woll C (2008) Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc 130(45):14952–14953

    CAS  Google Scholar 

  104. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    CAS  Google Scholar 

  105. Vaisocherova H, Mrkvova K, Piliarik M, Jinoch P, Steinbachova M, Homola J (2007) Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens Bioelectron 22(6):1020–1026

    CAS  Google Scholar 

  106. Vaisocherová H, Zítová A, Lachmanová M, Štěpának J, Rosenberg I, Králíková Š, Liboska R, Rejman D, Homola J (2006) Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance method. Biopolymers 82:394–398

    Google Scholar 

  107. Piliarik M, Kvasnicka P, Galler N, Krenn JR, Homola J (2011) Local refractive index sensitivity of plasmonic nanoparticles. Opt Express 19(10):9213–9220

    CAS  Google Scholar 

  108. Xu J, Zhang L, Gong H, Homola J, Yu Q (2011) Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms. Small 7(3):371–376

    CAS  Google Scholar 

  109. Amiji M, Park K (1992) Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13(10):682–692. doi:10.1016/0142-9612(92)90128-b

    CAS  Google Scholar 

  110. Maechling-Strasser C, Déjardin P, Galin JC, Schmitt A (1989) Preadsorption of polymers on glass and silica to reduce fibrinogen adsorption. J Biomed Mater Res 23(12):1385–1393

    CAS  Google Scholar 

  111. Orgeret-Ravanat C, Gramain P, Dejardin P, Schmitt A (1988) Adsorption/desorption of a PEO-rich comb-like polymer at a silica/aqueous solution interface. Colloids Surf 33:109–119

    CAS  Google Scholar 

  112. Třesohlavá E, Popelka Š, Machová L, Rypáček F (2010) Modification of polylactide surfaces with lactide-ethylene oxide functional block copolymers: accessibility of functional groups. Biomacromolecules 11(1):68–75

    Google Scholar 

  113. Pasche S, De Paul SM, Voros J, Spencer ND, Textor M (2003) Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: A quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir 19(22):9216–9225

    CAS  Google Scholar 

  114. McPherson T, Kidane A, Szleifer I, Park K (1998) Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14(1):176–186

    CAS  Google Scholar 

  115. Kidane A, Lantz GC, Jo S, Park K (1999) Surface modification with PEO-containing triblock copolymer for improved biocompatibility: in vitro and ex vivo studies. J Biomater Sci Polym Ed 10(10):1089–1105

    CAS  Google Scholar 

  116. Zoulalian V, Zurcher S, Tosatti S, Textor M, Monge S, Robin JJ (2010) Self-assembly of poly(ethylene glycol)-poly(alkyl phosphonate) terpolymers on titanium oxide surfaces: synthesis, interface characterization, investigation of nonfouling properties, and long-term stability. Langmuir 26(1):74–82

    CAS  Google Scholar 

  117. Zoulalian V, Monge S, Zürcher S, Textor M, Robin JJ, Tosatti S (2006) Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). J Phys Chem B 110(51):25603–25605

    CAS  Google Scholar 

  118. Pop-Georgievski O, Stpn P, Houska M, Chvostová D, Vr P, Rypáček F (2011) Poly(ethylene oxide) layers grafted to dopamine-melanin anchoring layer: stability and resistance to protein adsorption. Biomacromolecules 12(9):3232–3242

    CAS  Google Scholar 

  119. Sharma S, Johnson RW, Desai TA (2004) Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices. Langmuir 20(2):348–356

    CAS  Google Scholar 

  120. Du YJ, Brash JL (2003) Synthesis and characterization of thiol-terminated poly(ethylene oxide) for chemisorption to gold surface. J Appl Polym Sci 90(2):594–607

    CAS  Google Scholar 

  121. Unsworth LD, Sheardown H, Brash JL (2005) Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting. Biomaterials 26(30):5927–5933

    CAS  Google Scholar 

  122. Unsworth LD, Sheardown H, Brash JL (2005) Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density. Langmuir 21(3):1036–1041

    CAS  Google Scholar 

  123. Unsworth LD, Sheardown H, Brash JL (2008) Protein-resistant poly(ethylene oxide)-grafted surfaces: chain density-dependent multiple mechanisms of action. Langmuir 24(5):1924–1929

    CAS  Google Scholar 

  124. Dalsin JL, Hu B-H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125(14):4253–4258

    CAS  Google Scholar 

  125. Dalsin JL, Lin L, Tosatti S, Vörös J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG − DOPA. Langmuir 21(2):640–646

    CAS  Google Scholar 

  126. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    CAS  Google Scholar 

  127. Zurcher S, Wackerlin D, Bethuel Y, Malisova B, Textor M, Tosatti S, Gademann K (2006) Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc 128(4):1064–1065

    Google Scholar 

  128. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18):5605–5620

    CAS  Google Scholar 

  129. Knoll D, Hermans J (1983) Polymer-protein interactions - comparison of experiment and excluded volume theory. J Biol Chem 258(9):5710–5715

    CAS  Google Scholar 

  130. Norde W, Gags D (2004) Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces: influence of PEO chain length, grafting density, and temperature. Langmuir 20(10):4162–4167

    CAS  Google Scholar 

  131. Szleifer I (1997) Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys J 72(2):595–612

    CAS  Google Scholar 

  132. Szleifer I (1997) Polymers and proteins: interactions at interfaces. Curr Opinion Solid State Mater Sci 2(3):337–344

    CAS  Google Scholar 

  133. Brittain WJ, Minko S (2007) A structural definition of polymer brushes. J Polym Sci Polym Chem 45(16):3505–3512

    CAS  Google Scholar 

  134. Advincula RC, Brittain WJ, Caster KC, Jürgen R (2004) Polymer brushes: synthesis, characterization, applications. Wiley Interscience

  135. De Vos K, Girones J, Popelka S, Schacht E, Baets R, Bienstman P (2009) SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. Biosens Bioelectron 24(8):2528–2533

    Google Scholar 

  136. Feng W, Zhu SP, Ishihara K, Brash JL (2005) Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir 21(13):5980–5987

    CAS  Google Scholar 

  137. Shen M, Martinson L, Wagner MS, Castner DG, Ratner BD, Horbett TA (2002) PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J Biomater Sci Polym Ed 13:367–390

    CAS  Google Scholar 

  138. Choukourov A, Gordeev I, Polonskyi O, Artemenko A, Hanyková L, Krakovský I, Kylián O, Slavínská D, Biederman H (2010) Poly(ethylene oxide)-like plasma polymers produced by plasma-assisted vacuum evaporation. Plasma Process Polym 7(6):445–458

    CAS  Google Scholar 

  139. Muguruma H (2010) Plasma-polymerized films for biochip design. Plasma Process Polym 7(2):151–162

    CAS  Google Scholar 

  140. von Muhlen MG, Brault ND, Knudsen SM, Jiang S, Manalis SR (2010) Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem 82(5):1905–1910

    Google Scholar 

  141. Norde W (2007) Surface-tethered polymers to influence protein adsorption and microbial adhesion. Z Phys Chem 221(1):47–63

    CAS  Google Scholar 

  142. Quirk RP, Mathers RT, Cregger T, Foster MD (2002) Anionic synthesis of block copolymer brushes grafted from a 1,1-diphenylethylene monolayer. Macromolecules 35(27):9964–9974

    CAS  Google Scholar 

  143. Advincula R (2006) Polymer brushes by anionic and cationic surface-initiated polymerization (SIP). Adv Polym Sci 197:107–136

    CAS  Google Scholar 

  144. Li J, Chen X, Chang Y-C (2005) Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers. Langmuir 21(21):9562–9567

    CAS  Google Scholar 

  145. Dubois P, Coulembier O, Raquez J-M (eds) (2009) Handbook of ring opening polymerization. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  146. Barner-Kowollik C (ed) (2008) Handbook of RAFT polymerization. Wiley-VCH

  147. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson L-S, Efimenko K, Österberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10):2683–2691

    CAS  Google Scholar 

  148. Huang X, Wirth MJ (1999) Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity. Macromolecules 32(5):1694–1696

    CAS  Google Scholar 

  149. Bain CD, Evall J, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc 111(18):7155–7164

    CAS  Google Scholar 

  150. Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A (2007) Grafting from surfaces for “Everyone”: ARGET ATRP in the presence of air. Langmuir 23(8):4528–4531

    CAS  Google Scholar 

  151. Tugulu S, Klok H-A (2008) Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules 9(3):906–912

    CAS  Google Scholar 

  152. Brault ND, Gao C, Xue H, Piliarik M, Homola J, Jiang S, Yu Q (2010) Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron 25(10):2276–2282

    CAS  Google Scholar 

  153. Kenausis GL, Voros J, Elbert DL, Huang NP, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND (2000) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B 104(14):3298–3309

    CAS  Google Scholar 

  154. Rodriguez-Emmenegger C, Jäger A, Jäger E, Stepanek P, Alles AB, Guterres SS, Pohlmann AR, Brynda E (2011) Polymeric nanocapsules ultra stable in complex biological media. Colloids Surf B: Biointerfaces 83(2):376–381

    CAS  Google Scholar 

  155. Lavanant L, Pullin B, Hubbell JA, Klok H-A (2010) A facile strategy for the modification of polyethylene substrates with non-fouling, bioactive poly(poly(ethylene glycol) methacrylate) brushes. Macromol Biosci 10(1):101–108

    CAS  Google Scholar 

  156. Pop-Georgievski O, Rodriguez-Emmenegger C, Pereira AD, Proks V, Brynda E, Rypacek F (2013) Biomimetic non-fouling surfaces: extending the concepts. J Mater Chem B 1(22):2859–2867

    CAS  Google Scholar 

  157. Huang W, Kim J-B, Bruening ML, Baker GL (2002) Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules 35(4):1175–1179

    CAS  Google Scholar 

  158. de los Santos Pereira A, Riedel T, Brynda E, Rodriguez-Emmenegger C (2014) Hierarchical antifouling brushes for biosensing applications. Sensors Actuators B Chem 202:1313–1321

    Google Scholar 

  159. Rodriguez-Emmenegger C, Hasan E, Pop-Georgievski O, Houska M, Brynda E, Alles AB (2012) Controlled/living surface-initiated ATRP of antifouling polymer brushes from gold in PBS and blood sera as a model study for polymer modifications in complex biological media. Macromol Biosci 12(4):525–532

    CAS  Google Scholar 

  160. Ma H, Wells M, Beebe TP, Chilkoti A (2006) Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold. Adv Funct Mater 16(5):640–648

    CAS  Google Scholar 

  161. Ma HW, Hyun JH, Stiller P, Chilkoti A (2004) “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16(4):338–341

    CAS  Google Scholar 

  162. Brown AA, Khan NS, Steinbock L, Huck WTS (2005) Synthesis of oligo(ethylene glycol) methacrylate polymer brushes. Eur Polym J 41(8):1757–1765

    CAS  Google Scholar 

  163. Paripovic D, Klok H-A (2011) Improving the stability in aqueous media of polymer brushes grafted from silicon oxide substrates by surface-initiated atom transfer radical polymerization. Macromol Chem Phys 47:782–791

    Google Scholar 

  164. Fan X, Lin L, Messersmith PB (2006) Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: a new route toward polymer-matrix nanocomposites. Compos Sci Technol 66(9):1198–1204

    CAS  Google Scholar 

  165. Riedel T, Riedelova-Reicheltova Z, Majek P, Rodriguez-Emmenegger C, Houska M, Dyr JE, Brynda E (2013) Complete identification of proteins responsible for human blood plasma fouling on poly(ethylene glycol)-based surfaces. Langmuir 29(10):3388–3397

    CAS  Google Scholar 

  166. Kizhakkedathu JN, Janzen J, Le Y, Kainthan RK, Brooks DE (2009) Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Langmuir 25(6):3794–3801

    CAS  Google Scholar 

  167. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers, vol 201. Advances in polymer science. Springer-Verlag Berlin, Berlin, pp 157–224

  168. Singh PK, Singh VK, Singh M (2007) ATRP in the design of functional materials for biomedical e-Polymers 030:1

  169. Ma IY, Lobb EJ, Billingham NC, Armes SP, Lewis AL, Lloyd AW, Salvage J (2002) Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study. Macromolecules 35(25):9306–9314

    CAS  Google Scholar 

  170. Feng W, Brash JL, Zhu SP (2006) Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials 27(6):847–855

    CAS  Google Scholar 

  171. Feng W, Gao X, McClung G, Zhu S, Ishihara K, Brash JL (2011) Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Acta Biomater 7(10):3692–3699

    CAS  Google Scholar 

  172. Athawale MV, Dordick JS, Garde S (2005) Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility. Biophys J 89(2):858–866

    CAS  Google Scholar 

  173. Kitano H, Mori T, Takeuchi Y, Tada S, Gemmei-Ide M, Yokoyama Y, Tanaka M (2005) Structure of water incorporated in sulfobetaine polymer films as studied by ATR-FTIR. Macromol Biosci 5(4):314–321

    CAS  Google Scholar 

  174. West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 25(7–8):1195–1204

  175. Wu J, Lin W, Wang Z, Chen S, Chang Y (2012) Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir. doi:10.1021/la300394c

    Google Scholar 

  176. Cho WK, Kong B, Choi IS (2007) Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir 23(10):5678–5682

    CAS  Google Scholar 

  177. Zhang Z, Chen S, Chang Y, Jiang S (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110(22):10799–10804

    CAS  Google Scholar 

  178. Yang W, Chen S, Cheng G, Vaisocherová H, Xue H, Li W, Zhang J, Jiang S (2008) Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 24(17):9211–9214

    CAS  Google Scholar 

  179. Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S (2008) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29(35):4592–4597

    CAS  Google Scholar 

  180. Rodriguez-Emmenegger C, Schmidt BVKJ, Sedlakova Z, Subr V, Alles AB, Brynda E, Barner-Kowollik C (2011) Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights. Macromol Rapid Commun 32(13):958–965

    CAS  Google Scholar 

  181. Abraham S, Unsworth LD (2011) Multi-functional initiator and poly(carboxybetaine methacrylamides) for building biocompatible surfaces using “nitroxide mediated free radical polymerization” strategies. J Polym Sci A Polym Chem 49(5):1051–1060

    CAS  Google Scholar 

  182. Edlund U, Rodriguez Emmenegger C, Brynda E, Albertsson AC (2012) Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polym Chem-UK In press

  183. Zhao C, Li L, Wang Q, Yu Q, Zheng J (2011) Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir 27(8):4906–4913

    CAS  Google Scholar 

  184. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY (2010) Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir 26(5):3522–3530

    CAS  Google Scholar 

  185. Bernards MT, Cheng G, Zhang Z, Chen S, Jiang S (2008) Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules 41(12):4216–4219

    CAS  Google Scholar 

  186. McCormick CL, Johnson CB (1988) Water-soluble polymers. 28. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: synthesis and characterization. Macromolecules 21(3):686–693

    CAS  Google Scholar 

  187. Yang JH, John MS (1995) The conformation and dynamics study of amphoteric copolymers, P(sodium 2-methacryloyloxyethanesulfonate-co-2-methacryloyloxyethyltrimethylammonium iodide), using viscometry, 14N-, and 23Na-NMR. J Polym Sci A Polym Chem 33(15):2613–2621

    CAS  Google Scholar 

  188. Li G, Xue H, Gao C, Zhang F, Jiang S (2009) Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules 43(1):14–16

    Google Scholar 

  189. Mi L, Bernards MT, Cheng G, Yu Q, Jiang S (2010) pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials 31(10):2919–2925

    CAS  Google Scholar 

  190. Rodriguez-Emmenegger C, Hasan E, Pop-Georgievski O, Houska M, Brynda E, Bologna Alles A (2011) Controlled/living surface-initiated ATRP of antifouling polymer brushes from gold in PBS and blood sera as a model study for polymer modifications in complex biological media. Macromol Biosci. doi:10.1002/mabi.201100425

    Google Scholar 

  191. Zhao C, Li L, Zheng J (2010) Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Langmuir 26(22):17375–17382

    CAS  Google Scholar 

  192. Pereira AD, Rodriguez-Emmenegger C, Surman F, Riedel T, Alles AB, Brynda E (2014) Use of pooled blood plasmas in the assessment of fouling resistance. RSC Adv 4(5):2318–2321

    CAS  Google Scholar 

  193. Gunkel G, Weinhart M, Becherer T, Haag R, Huck WTS (2011) Effect of polymer brush architecture on antibiofouling properties. Biomacromolecules. doi:10.1021/bm200943m

    Google Scholar 

  194. Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127(22):7972–7973

    CAS  Google Scholar 

  195. Konradi R, Pidhatika B, Muhlebach A, Textor M (2008) Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24(3):613–616

    CAS  Google Scholar 

  196. Raynor JE, Petrie TA, Fears KP, Latour RA, García AJ, Collard DM (2009) Saccharide polymer brushes to control protein and cell adhesion to titanium. Biomacromolecules 10(4):748–755

    CAS  Google Scholar 

  197. Yu K, Kizhakkedathu JN (2010) Synthesis of functional polymer brushes containing carbohydrate residues in the pyranose form and their specific and nonspecific interactions with proteins. Biomacromolecules 11(11):3073–3085

    CAS  Google Scholar 

  198. Feng W, Zhu SP, Ishihara K, Brash JL (2006) Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases 1(1):50–60

    CAS  Google Scholar 

  199. Unsworth LD, Tun Z, Sheardown H, Brash JL (2006) In situ neutron reflectometry investigation of gold-chemisorbed PEO layers of varying chain density: relationship of layer structure to protein resistance. J Colloid Interface Sci 296(2):520–526

    CAS  Google Scholar 

  200. Kitano H, Tada S, Mori T, Takaha K, Gemmei-Ide M, Tanaka M, Fukuda M, Yokoyama Y (2005) Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir 21(25):11932–11940

    CAS  Google Scholar 

  201. Laughlin RG (1991) Fundamentals of the zwitterionic hydrophilic group. Langmuir 7(5):842–847

    CAS  Google Scholar 

  202. Shao Q, He Y, White AD, Jiang S (2010) Difference in hydration between carboxybetaine and sulfobetaine. J Phys Chem B 114(49):16625–16631

    CAS  Google Scholar 

  203. Weers JG, Rathman JF, Axe FU, Crichlow CA, Foland LD, Scheuing DR, Wiersema RJ, Zielske AG (1991) Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir 7(5):854–867

    CAS  Google Scholar 

  204. Kane RS, Deschatelets P, Whitesides GM (2003) Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19(6):2388–2391. doi:10.1021/la020737x

    CAS  Google Scholar 

  205. Zhang Y, Cremer PS (2010) Chemistry of hofmeister anions and osmolytes. Annu Rev Phys Chem 61(1):63–83

    CAS  Google Scholar 

  206. Jin Z, Feng W, Beisser K, Zhu S, Sheardown H, Brash JL (2009) Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: effects of main chain and side chain lengths of grafts. Colloids Surf B: Biointerfaces 70(1):53–59

    CAS  Google Scholar 

  207. Michel R, Pasche S, Textor M, Castner DG (2005) Influence of PEG architecture on protein adsorption and conformation. Langmuir 21(26):12327–12332

    CAS  Google Scholar 

  208. Rubinstein M, Colby RH (2003) Polymer physics. OUP, Oxford

    Google Scholar 

  209. Gunkel G, Huck WT (2013) Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces. J Am Chem Soc 135(18):7047–7052

    CAS  Google Scholar 

  210. Haake HM, de Best L, Irth H, Abuknesha R, Brecht A (2000) Label-free biochemical detection coupled on-line to liquid chromatography. Anal Chem 72(15):3635–3641

    CAS  Google Scholar 

  211. Yu Q, Zhang Y, Wang H, Brash J, Chen H (2011) Anti-fouling bioactive surfaces. Acta Biomater 7(4):1550–1557

    CAS  Google Scholar 

  212. Springer T, Bockova M, Homola J (2013) Label-free biosensing in complex media: a referencing approach. Anal Chem 85(12):5637–5640

    CAS  Google Scholar 

  213. Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, Bedajankova A, Jinoch P, Boltovets PM, Brynda E (2014) Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens Bioelectron 55:278–284

    CAS  Google Scholar 

  214. Gautrot JE, Trappmann B, Oceguera-Yanez F, Connelly J, He X, Watt FM, Huck WTS (2010) Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale. Biomaterials 31(18):5030–5041

    CAS  Google Scholar 

  215. Piliarik M, Bocková M, Homola J (2010) Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectron 26(4):1656–1661

    CAS  Google Scholar 

  216. Vaisocherova H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor AD, Piliarik M, Homola J, Jiang S (2009) Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma–material selection and protein immobilization optimization. Biosens Bioelectron 24(7):1924–1930

    CAS  Google Scholar 

  217. Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S (2010) Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials 31(7):1486–1492

    CAS  Google Scholar 

  218. Yang W, Xue H, Li W, Zhang J, Jiang S (2009) Pursuing “Zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 25(19):11911–11916

    CAS  Google Scholar 

  219. Zou YQ, Yeh PYJ, Rossi NAA, Brooks DE, Kizhakkedathu JN (2010) Nonbiofouling polymer brush with latent aldehyde functionality as a template for protein micropatterning. Biomacromolecules 11(1):284–293

    CAS  Google Scholar 

  220. Huang NP, Voros J, De Paul SM, Textor M, Spencer ND (2002) Biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol): a novel polymeric interface for bioaffinity sensing. Langmuir 18(1):220–230

    CAS  Google Scholar 

  221. Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT (2004) Microspotting streptavidin and double-stranded DNA Arrays on gold for high-throughput studies of protein − DNA interactions by surface plasmon resonance microscopy. Anal Chem 76(4):918–929

    CAS  Google Scholar 

  222. Buxboim A, Bar-Dagan M, Frydman V, Zbaida D, Morpurgo M, Bar-Ziv R (2007) A single-step photolithographic interface for cell-free gene expression and active biochips. Small 3(3):500–510

    CAS  Google Scholar 

  223. Jonkheijm P, Weinrich D, Köhn M, Engelkamp H, Christianen PCM, Kuhlmann J, Maan JC, Nüsse D, Schroeder H, Wacker R, Breinbauer R, Niemeyer CM, Waldmann H (2008) Photochemical surface patterning by the thiol-ene reaction. Angew Chem Int Ed 47(23):4421–4424

    CAS  Google Scholar 

  224. Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM (1996) A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal Chem 68(3):490–497

    CAS  Google Scholar 

  225. Schmid EL, Keller TA, Dienes Z, Vogel H (1997) Reversible oriented surface immobilization of functional proteins on oxide surfaces. Anal Chem 69(11):1979–1985

    CAS  Google Scholar 

  226. Lofas S, Johnsson B, Edstrom A, Hansson A, Lindquist G, Hillgren RMM, Stigh L (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface-plasmon resonance sensors. Biosens Bioelectron 10(9–10):813–822

    Google Scholar 

  227. Jungar C, Strandh M, Ohlson S, Mandenius CF (2000) Analysis of carbohydrates using liquid chromatography–surface plasmon resonance immunosensing systems. Anal Biochem 281(2):151–158

    CAS  Google Scholar 

  228. Brynda E, Houska M, Brandenburg A, Wikerstal A, Škvor J (1999) The detection of human β2-microglobulin by grating coupler immunosensor with three dimensional antibody networks. Biosens Bioelectron 14(4):363–368

    CAS  Google Scholar 

  229. Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P, Rosicky J (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuators B Chem 74(1–3):100–105

    CAS  Google Scholar 

  230. Brynda E, Houska M, Brandenburg A, Wikerstål A (2002) Optical biosensors for real-time measurement of analytes in blood plasma. Biosens Bioelectron 17(8):665–675

    CAS  Google Scholar 

  231. Brynda E, Houska M, Škvor J, Ramsden JJ (1998) Immobilisation of multilayer bioreceptor assemblies on solid substrates. Biosens Bioelectron 13(2):165–172

    CAS  Google Scholar 

  232. Kuzmyn AR, Pereira AD, Pop-Georgievski O, Bruns M, Brynda E, Rodriguez-Emmenegger C (2014) Exploiting end group functionalization for the design of antifouling bioactive brushes. Polym Chem UK 5(13):4124–4131

    CAS  Google Scholar 

  233. Lee BS, Lee JK, Kim W-J, Jung YH, Sim SJ, Lee J, Choi IS (2007) Surface-initiated, atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate and subsequent click chemistry for bioconjugation. Biomacromolecules 8(2):744–749

    CAS  Google Scholar 

  234. Matyjaszewski K, Shipp DA, Wang J-L, Grimaud T, Patten TE (1998) Utilizing halide exchange to improve control of atom transfer radical polymerization. Macromolecules 31(20):6836–6840

    CAS  Google Scholar 

  235. Springer T, Piliarik M, Homola J (2010) Real-time monitoring of biomolecular interactions in blood plasma using a surface plasmon resonance biosensor. Anal Bioanal Chem 398(5):1955–1961

    CAS  Google Scholar 

  236. Ladd J, Lu H, Taylor AD, Goodell V, Disis ML, Jiang S (2009) Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids Surf B: Biointerfaces 70(1):1–6

    CAS  Google Scholar 

  237. Bolduc OR, Pelletier JN, Masson JF (2010) SPR biosensing in crude serum using ultralow fouling binary patterned peptide SAM. Anal Chem 82(9):3699–3706

    CAS  Google Scholar 

  238. Brault ND, White AD, Taylor AD, Yu Q, Jiang S (2013) Directly functionalizable surface platform for protein arrays in undiluted human blood plasma. Anal Chem 85(3):1447–1453

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Cesar Rodriguez-Emmenegger (Institute of Macromolecular Chemistry) and Nicholas Scott Lynn (Institute of Photonics and Electronics) for valuable comments and discussions. This research was supported by Praemium Academiae of the Academy of Sciences of the Czech Republic and the Czech Science Foundation (contract # P205/12/G118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Homola.

Additional information

Published in the topical collection Direct Optical Detection with guest editors Guenter Gauglitz and Jiri Homola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaisocherová, H., Brynda, E. & Homola, J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 407, 3927–3953 (2015). https://doi.org/10.1007/s00216-015-8606-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8606-5

Keywords

Navigation