Skip to main content
Log in

Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluoroquinolones (FQNs) are broad-spectrum antibacterial agents widely used in animal husbandry and aquaculture. The residues and antimicrobial resistance of such antibiotics are a major public health concern. To realize multianalyte detection of FQN residues, a genetically modified bacterium, Escherichia coli pK12 harboring plasmid pRecAlux3, was constructed in this study to develop a bioluminescent-bacteria-based assay for the detection of FQNs in animal-derived foods. This assay was based on the principle of induction of an SOS response by FQNs via inducing the recA-promoter-fused luciferase reporter gene existing on the plasmid pRecAlux3. E. coli pK12 was able to recognize 11 FQNs: difloxacin, enrofloxacin, ciprofloxacin, sarafloxacin, norfloxacin, danofloxacin, ofloxacin, pefloxacin, lomefloxacin, marbofloxacin, and orbifloxacin. This method could be applied to 11 edible tissues, including milk, fish muscle, and the muscles, livers, and kidneys of cattle, chickens, and pigs, with a very simple and rapid sample extraction procedure using only phosphate-buffered saline. The limits of detection of the FQNs were between 12.5 and 100 μg kg−1, all of which were lower than the maximum residue limits. Most of the recoveries of the FQNs were in the range from 60 to 120 %, and the interassay coefficients of variation were less than 30 %. This method, confirmed by high-performance liquid chromatography, is reliable and can be used as both a screening test and a semiquantitative assay, when the identity of a single type of FQN is known.

The principle of the genetically modified bioluminescent bacteria based assay for detection offluoroquinolones

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BLBA:

Bioluminescent-bacteria-based assay

CV:

Coefficient of variation

FQN:

Fluoroquinolone

GFP:

Green fluorescent protein

HPLC:

High-performance liquid chromatography

IC:

Induction coefficient

LB:

Luria–Bertani

LOD:

Limit of detection

MRL:

Maximum residue level

PBS:

Phosphate-buffered saline

References

  1. Tao X, Chen M, Jiang H, Shen J, Wang Z, Wang X, Wu X, Wen K (2013) Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment. Anal Bioanal Chem 405(23):7477–7484

    Article  CAS  Google Scholar 

  2. European Commission (2010) Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Union L 15:1

    Google Scholar 

  3. Schneider MJ (2009) Methods for the analysis of fluoroquinolones in biological fluids. Bioanalysis 1(2):415–435

    Article  CAS  Google Scholar 

  4. Sousa J, Alves G, Abrantes J, Fortuna A, Falcao A (2012) Analytical methods for determination of new fluoroquinolones in biological matrices and pharmaceutical formulations by liquid chromatography: a review. Anal Bioanal Chem 403(1):93–129

    Article  CAS  Google Scholar 

  5. Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol 191:131–162

    CAS  Google Scholar 

  6. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    Article  CAS  Google Scholar 

  7. Korpela MT, Kurittu JS, Karvinen JT, Karp MT (1998) A recombinant Escherichia coli sensor strain for the detection of tetracyclines. Anal Chem 70(21):4457–4462

    Article  CAS  Google Scholar 

  8. Bahl MI, Hansen LH, Sorensen SJ (2005) Construction of an extended range whole-cell tetracycline biosensor by use of the tet(M) resistance gene. FEMS Microbiol Lett 253(2):201–205

    Article  CAS  Google Scholar 

  9. Virolainen NE, Pikkemaat MG, Elferink JW, Karp MT (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J Agric Food Chem 56(23):11065–11070

    Article  CAS  Google Scholar 

  10. Valtonen SJ, Kurittu JS, Karp MT (2002) A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams. J Biomol Screen 7(2):127–134

    CAS  Google Scholar 

  11. Smolander O, Ribeiro AS, Yli-Harja O, Karp M (2009) Identification of β-lactam antibiotics using bioluminescent Escherichia coli and a support vector machine classifier algorithm. Sens Actuators B Chem 141(2):604–609

    Article  CAS  Google Scholar 

  12. Shapiro E, Baneyx F (2007) Stress-activated bioluminescent Escherichia coli sensors for antimicrobial agents detection. J Biotechnol 132(4):487–493

    Article  CAS  Google Scholar 

  13. Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301(2):235–242

    Article  CAS  Google Scholar 

  14. Allison DG, Sattenstall MA (2007) The influence of green fluorescent protein incorporation on bacterial physiology: a note of caution. J Appl Microbiol 103(2):318–324

    Article  CAS  Google Scholar 

  15. Li YF, Li FY, Ho CL, Liao VH (2008) Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut 152(1):123–129

    Article  CAS  Google Scholar 

  16. Roda A, Pasini P, Mirasoli N, Guardigli M, Russo C, Musiani M, Baraldini M (2001) Sensitive determination of urinary mercury(II) by a bioluminescent transgenic bacteria-based biosensor. Anal Lett 34(1):29–41

    Article  CAS  Google Scholar 

  17. Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA'::lux, uvrA'::lux, or alkA'::lux reporter plasmids. Appl Environ Microbiol 63(7):2566–2571

    CAS  Google Scholar 

  18. Cheng G, Hao H, Dai M, Liu Z, Yuan Z (2013) Antibacterial action of quinolones: from target to network. Eur J Med Chem 66:555–562

    Article  CAS  Google Scholar 

  19. Butala M, Zgur-Bertok D, Busby SJ (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66(1):82–93

    Article  CAS  Google Scholar 

  20. Shaw KJ, Miller N, Liu X, Lerner D, Wan J, Bittner A, Morrow BJ (2003) Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol 5(2):105–122

    Article  CAS  Google Scholar 

  21. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169(11):5101–5112

    CAS  Google Scholar 

  22. Manukhov IV, Kotova V, Mal'dov DK, Il'ichev AV, Bel'kov AP, Zavil'gel'skii GB (2008) Induction of oxidative stress and SOS response in Escherichia coli by plant extracts: the role of hydroperoxides and the synergistic effect of simultaneous treatment with cisplatinum. Mikrobiologiia 77(5):590–597

    CAS  Google Scholar 

  23. Pellinen T, Bylund G, Virta M, Niemi A, Karp M (2002) Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes. J Agric Food Chem 50(17):4812–4815

    Article  CAS  Google Scholar 

  24. Choi J, Yee AJ, Thompson D, Samoluk J, Mitchell M, Black WD (1999) Determination of fluoroquinolone residues in animal tissues using Escherichia coli as indicator organism. J AOAC Int 82(6):1407–1412

    CAS  Google Scholar 

  25. Huang X, Zheng J, Li S (2005) A rapid and simple microbiology method of determination of the quinolones residue in eel samples with a sensitive bacteria (in Chinese). Freshw Fish 35(4):3–6

    Google Scholar 

  26. Davidov Y, Rozen R, Smulski DR, Van Dyk TK, Vollmer AC, Elsemore DA, LaRossa RA, Belkin S (2000) Improved bacterial SOS promoter∷lux fusions for genotoxicity detection. Mutat Res 466(1):97–107

    Article  CAS  Google Scholar 

  27. Fux CA, Shirtliff M, Stoodley P, Costerton JW (2005) Can laboratory reference strains mirror "real-world" pathogenesis? Trends Microbiol 13(2):58–63

    Article  CAS  Google Scholar 

  28. Suter W, Rosselet A, Knusel F (1978) Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli. Antimicrob Agents Chemother 13(5):770–783

    Article  CAS  Google Scholar 

  29. Ganley B, Chowdhury G, Bhansali J, Daniels JS, Gates KS (2001) Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide. Bioorg Med Chem 9(9):2395–2401

    Article  CAS  Google Scholar 

  30. Knoll U, Glunder G, Kietzmann M (1999) Comparative study of the plasma pharmacokinetics and tissue concentrations of danofloxacin and enrofloxacin in broiler chickens. J Vet Pharmacol Ther 22(4):239–246

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program of International S & T Cooperation Funded Project (program no. 2011DFA32140), the National Natural Science Foundation of China (grant nos. 31272614 and 31302140), and the Fundamental Research Funds for the Central Universities (program nos. 2013QC002 and 2011PY078).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonghui Yuan.

Additional information

Guyue Cheng and Xiaobing Dong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Dong, X., Wang, Y. et al. Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods. Anal Bioanal Chem 406, 7899–7910 (2014). https://doi.org/10.1007/s00216-014-8228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8228-3

Keywords

Navigation