Skip to main content
Log in

QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: a critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) is an extraction and clean-up technique originally developed for recovering pesticide residues from fruits and vegetables. Since its introduction, and until December 2013, about 700 papers have been published using the QuEChERS technique, according to a literature overview carried out using SciFinder, Elsevier SciVerse, and Google search engines. Most of these papers were dedicated to pesticide multiresidue analysis in food matrices, and this topic has been thoroughly reviewed over recent years. The QuEChERS approach is now rapidly developing beyond its original field of application to analytes other than pesticides, and matrices other than food, such as biological fluids and non-edible plants, including Chinese medicinal plants. Recently, the QuEChERS concept has spread to environmental applications by analyzing not only pesticides but also other compounds of environmental concern in soil, sediments, and water. To the best of our knowledge, QuEChERS environmental applications have not been reviewed so far; therefore, in this contribution, after a general discussion on the evolution and changes of the original QuEChERS method, a critical survey of the literature regarding environmental applications of conventional and modified QuEChERS methodology is provided. The overall recoveries obtained with QuEChERS and other extraction approaches (e.g., accelerated solvent extraction, ultrasonic solvent extraction, liquid/solid extraction, and soxhlet extraction) were compared, providing evidence for QuEChERS higher recoveries for various classes of compounds, such as biopesticides, chloroalkanes, phenols, and perfluoroalkyl substances. The role of physicochemical properties of soil (i.e., clay and organic carbon content, as well as cation exchange capacity) and target analytes (i.e., log KOW, water solubility, and vapor pressure) were also evaluated in order to interpret recovery and matrix effect data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    CAS  Google Scholar 

  2. Lehotay SJ, De KA, Hiemstra M, Van Bodegraven P (2005) Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J AOAC Int 88(2):595–614

    CAS  Google Scholar 

  3. Anastassiades M, Scherbaum E, Tasdelen B, Stajnbaher D (2007) Recent developments in QuEChERS methodology for pesticide multiresidue analysis. In: Ohkawa HM, Hisashi; Lee, Philip W (eds) Pesticide chemistry: crop protection, public health, environmental safety. Wiley-VCH Verlag GmbH & Co: KGaA, pp 439–458 doi:10.1002/9783527611249.ch46

  4. Mills PA, Onley JH, Gaither RA (1963) Rapid method for chlorinated pesticide residues in nonfatty foods. J Assoc Off Agric Chem 46:186–191

    CAS  Google Scholar 

  5. Luke MA, Froberg JE, Masumoto HT (1975) Extraction and cleanup of organochlorine, organophosphate, organonitrogen, and hydrocarbon pesticides in produce for determination by gas-liquid chromatography. J Assoc Off Anal Chem 58(5):1020–1026

    CAS  Google Scholar 

  6. Lehotay SJ (2013) Revisiting the advantages of the QuEChERS approach to sample preparation. Separation Science, Eclipse Business Media Ltd., Frederick House, Princes Court, Nantwich CW5 6PQ, UK, Separation Science Webinar January 29th

  7. Lehotay SJ (2011) QuEChERS sample preparation approach for mass spectrometric analysis of pesticide zesidues in foods. In: Zweigenbaum J (ed) Methods Mol. Biol. vol 747. vol Mass Spectrometry in Food Safety. Springer, New York, NY, pp 65–91. doi:10.1007/978-1-61779-136-9_4

    Chapter  Google Scholar 

  8. Wilkowska A, Biziuk M (2010) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem 125(3):803–812. doi:10.1016/j.foodchem.2010.09.094

    Article  Google Scholar 

  9. Prestes OD, Friggi CA, Adaime MB, Zanella R (2009) QuEChERS—a modern sample preparation method for pesticide multiresidue determination in food by chromatographic methods coupled to mass spectrometry. Quim Nova 32(6):1620–1634

    Article  CAS  Google Scholar 

  10. Usui K, Hayashizaki Y, Minagawa T, Hashiyada M, Nakano A, Funayama M (2012) Rapid determination of disulfoton and its oxidative metabolites in human whole blood and urine using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Legal Med 14(6):309–316. doi:10.1016/j.legalmed.2012.06.005

    Article  CAS  Google Scholar 

  11. Vudathala D, Cummings M, Murphy L (2010) Analysis of multiple anticoagulant rodenticides in animal blood and liver tissue using principles of QuEChERS method. J Anal Toxicol 34(5):273–279

    Article  CAS  Google Scholar 

  12. Ribeiro C, Ribeiro AR, Maia AS, Gonçalves VMF, Tiritan ME (2014) New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem 44(2):142–185. doi:10.1080/10408347.2013.833850

    Article  CAS  Google Scholar 

  13. Thompson M, Ellison SLR, Fajgelj A, Willetts P, Wood R (1999) Harmonized guidelines for the use of recovery information in analytical measurement. Pure Appl Chem 71(2):337–348. doi:10.1351/pac199971020337

    Article  CAS  Google Scholar 

  14. Burns DT, Danzer K, Townshend A (2002) Use of the terms “recovery” and “apparent recovery” in analytical procedures: (IUPAC Recommendations 2002). Pure Appl Chem 74(11):2201–2205. doi:10.1351/pac200274112201

    Article  CAS  Google Scholar 

  15. Lehotay SJ, Anastassiades M, Majors RE (2010) The QuEChERS Revolution. Available at: http://www.chromatographyonline.com/lcgc/Column%3A+Sample+Preparation+Perspectives/The-QuEChERS-Revolution/ArticleStandard/Article/detail/685042. Accessed 16 Aug 2013.

  16. The Pesticide Manual, 16th Edition (2012). British Crop Protection Council MacBean, C. Pickett, J. (eds)

  17. Lehotay SJ, Maštovská K, Lightfield AR (2005) Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J AOAC Int 88(2):615–629

    CAS  Google Scholar 

  18. AOAC Official Method 2007.01 (2007). Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate

  19. UNI EN 15662:2009 (2009) [Alimenti di origine vegetale - Determinazione dei residui di pesticidi utilizzando GC-MS e/o LC-MS/MS dopo estrazione/separazione con acetonitrile e purificazione mediante SPE dispersiva - Metodo QuEChERS]

  20. Scifinder, version 2013 (2013) Accessed Jan–Dec 2013

  21. Koesukwiwat U, Sanguankaew K, Leepipatpiboon N (2008) Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 626(1):10–20. doi:10.1016/j.aca.2008.07.034

    Article  CAS  Google Scholar 

  22. Lehotay SJ, Maštovská K, Yun SJ (2005) Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. J AOAC Int 88(2):630–638

    CAS  Google Scholar 

  23. Alder L, Greulich K, Kempe G, Vieth B (2006) Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Mass Spectrom Rev 25(6):838–865. doi:10.1002/mas.20091

    Article  CAS  Google Scholar 

  24. Saito Y, Kodama S, Matsunaga A, Yamamoto A (2004) Multiresidue determination of pesticides in agricultural products by gas chromatography/mass spectrometry with large volume injection. J AOAC Int 87(6):1365–1367

    Google Scholar 

  25. Ueno E, Oshima H, Saito I, Matsumoto H, Yoshihiro Y, Nakazawa H (2004) Multiresidue analysis of pesticides in vegetables and fruits by gas chromatography/mass spectrometry after gel permeation chromatography and graphitized carbon column cleanup. J AOAC Int 87(4):1003–1015

    CAS  Google Scholar 

  26. Anastassiades M, Maštovská K, Lehotay SJ (2003) Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J Chromatogr A 1015(1/2):163–184. doi:10.1016/S0021-9673(03)01208-1

    Article  CAS  Google Scholar 

  27. Erney DR, Poole CF (1993) A study of single compound additives to minimize the matrix induced chromatographic response enhancement observed in the gas chromatography of pesticide residues. J High Resolut Chromatogr 16(8):501–503. doi:10.1002/jhrc.1240160812

    Article  CAS  Google Scholar 

  28. Čajka T, Maštovská K, Lehotay SJ, Hajšlová J (2005) Use of automated direct sample introduction with analyte protectants in the GC-MS analysis of pesticide residues. J Sep Sci 28(9/10):1048–1060. doi:10.1002/jssc.200500050

    Google Scholar 

  29. Kirchner M, Húšková R, Matisová E, Mocák J (2008) Fast gas chromatography for pesticide residues analysis using analyte protectants. J Chromatogr A 1186(1/2):271–280. doi:10.1016/j.chroma.2007.08.089

    Article  CAS  Google Scholar 

  30. Van Heide MD, Bruns S, Lach G, Parlar H (2012) Ascorbic acid as analyte protectant applied within the quechers multi-method (GC-MS). Fresenius Environ Bull 21(4A):1034–1041

    Google Scholar 

  31. Lesueur C, Gartner M, Mentler A, Fuerhacker M (2008) Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry. Talanta 75(1):284–293. doi:10.1016/j.talanta.2007.11.031

    Article  CAS  Google Scholar 

  32. Correia-Sá L, Fernandes VC, Carvalho M, Calhau C, Domingues VMF, Delerue-Matos C (2012) Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J Sep Sci 35(12):1521–1530. doi:10.1002/jssc.201200087

    Article  Google Scholar 

  33. Rashid A, Nawaz S, Barker H, Ahmad I, Ashraf M (2010) Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography-tandem mass spectrometry. J Chromatogr A 1217(17):2933–2939. doi:10.1016/j.chroma.2010.02.060

    Article  CAS  Google Scholar 

  34. Li C, Yang T, Wu YL (2012) Degradation of metaflumizone in rice, water and soil under field conditions. Ecotoxicol Environ Saf 86:73–78. doi:10.1016/j.ecoenv.2012.08.029

    Article  CAS  Google Scholar 

  35. Mantzos N, Karakitsou A, Zioris I, Leneti E, Konstantinou I (2013) QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int J Environ Anal Chem. doi:10.1080/03067319.2013.803282

    Google Scholar 

  36. Zhang JM, Chai WG, Wu YL (2012) Residues of chlorantraniliprole in rice field ecosystem. Chemosphere 87(2):132–136. doi:10.1016/j.chemosphere.2011.11.076

    Article  CAS  Google Scholar 

  37. Shi C, Gui W, Chen J, Zhu G (2010) Determination of oxadiargyl residues in environmental samples and rice samples. Bull Environ Contam Toxicol 84(2):236–239. doi:10.1007/s00128-009-9881-7

    Article  CAS  Google Scholar 

  38. Caldas SS, Bolzan CM, Cerqueira MB, Tomasini D, Furlong EB, Fagundes C, Primel EG (2011) Evaluation of a modified QuEChERS extraction of multiple classes of pesticides from a rice paddy soil by LC-APCI-MS/MS. J Agri Food Chem 59(22):11918–11926. doi:10.1021/jf202878s

    Article  CAS  Google Scholar 

  39. Mei M, Du ZX, Cen Y (2011) QuEChERS-ultra-performance liquid chromatography tandem mass spectrometry for determination of five currently used herbicides. Fenxi Huaxue/Chinese J Anal Chem 39(11):1659–1664. doi:10.1016/S1872-2040(10)60482-3

    Article  CAS  Google Scholar 

  40. Pinto CG, Laespada MEF, Martín SH, Ferreira AMC, Pavón JLP, Cordero BM (2010) Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples. Talanta 81(1/2):385–391. doi:10.1016/j.talanta.2009.12.013

    Article  CAS  Google Scholar 

  41. Herrero Martin S, García Pinto C, Pérez Pavón JL, Moreno Cordero B (2010) Determination of trihalomethanes in soil matrices by simplified quick, easy, cheap, effective, rugged, and safe extraction and fast gas chromatography with electron capture detection. J Chromatogr A 1217(30):4883–4889

    Article  CAS  Google Scholar 

  42. Pinto CG, Herrero Martín S, Pérez Pavón JL, Moreno Cordero B (2011) A simplified quick, easy, cheap, effective, rugged and safe approach for the determination of trihalomethanes and benzene, toluene, ethylbenzene, and xylenes in soil matrices by fast gas chromatography with mass spectrometry detection. Anal Chim Acta 689(1):129–136. doi:10.1016/j.aca.2011.01.023

    Article  Google Scholar 

  43. Salvia MV, Vulliet E, Wiest L, Baudot R, Cren-Olivé C (2012) Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography-tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. J Chromatogr A 1245:122–133. doi:10.1016/j.chroma.2012.05.034

    Article  CAS  Google Scholar 

  44. Salvia MV, Cren-Olivé C, Vulliet E (2013) Statistical evaluation of the influence of soil properties on recoveries and matrix effects during the analysis of pharmaceutical compounds and steroids by quick, easy, cheap, effective, rugged, and safe extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1315:53–60. doi:10.1016/j.chroma.2013.09.056

    Article  CAS  Google Scholar 

  45. Yang XB, Ying GG, Kookana RS (2010) Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography-mass spectrometry. J Environ Sci Health Part B Pestic Food Contam Agri Wastes 45(2):152–161. doi:10.1080/03601230903472165

    Article  CAS  Google Scholar 

  46. Fernandes VC, Domingues VF, Mateus N, Delerue-Matos C (2013) Multiresidue pesticides analysis in soils using modified QuEChERS with disposable pipette extraction and dispersive solid-phase extraction. J Sep Sci 36(2):376–382. doi:10.1002/jssc.201200673

    Article  CAS  Google Scholar 

  47. Rouvière F, Buleté A, Cren-Olivé C, Arnaudguilhem C (2012) Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta 93:336–344. doi:10.1016/j.talanta.2012.02.048

    Article  Google Scholar 

  48. Asensio-Ramos M, Hernández-Borges J, Ravelo-Pérez LM, Rodríguez-Delgado MA (2010) Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental, and forestal soils. Anal Bioanal Chem 396(6):2307–2319. doi:10.1007/s00216-009-3440-2

    Article  CAS  Google Scholar 

  49. Li Y, Dong F, Liu X, Xu J, Chen X, Han Y, Liang X, Zheng Y (2013) Development of a multi-residue enantiomeric analysis method for nine pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Hazard Mat 250(251):9–18. doi:10.1016/j.jhazmat.2013.01.071

    Article  Google Scholar 

  50. Santalad A, Zhou L, Shang F, Fitzpatrick D, Burakham R, Srijaranai S, Glennon JD, Luong JHT (2010) Micellar electrokinetic chromatography with amperometric detection and off-line solid-phase extraction for analysis of carbamate insecticides. J Chromatogr A 1217(32):5288–5297. doi:10.1016/j.chroma.2010.06.024

    Article  CAS  Google Scholar 

  51. Nagel TG (2009) The QuEChERS Method–A new Approach in Pesticide Analysis of Soils. Available at: http://www.journal-hfb.usab-tm.ro/romana/Lucrari_2009_paginate/89.pdf Accessed 28 Aug 2013

  52. Sahoo SK, Mandal K, Kumar R, Singh B (2013) Analysis of fluopicolide and propamocarb residues on tomato and soil using QuEChERS sample preparation method in combination with GLC and GCMS. Food Anal Methods 1–11 doi:10.1007/s12161-013-9709-2

  53. Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Song W, Wang Y, Zheng Y (2011) Simultaneous enantioselective determination of fenbuconazole and its main metabolites in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Chromatogr A 1218(38):6667–6674. doi:10.1016/j.chroma.2011.07.059

    Article  CAS  Google Scholar 

  54. Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Liang X, Zheng Y (2012) Simultaneous enantioselective determination of triazole fungicides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Chromatogr A 1224:51–60. doi:10.1016/j.chroma.2011.12.044

    Article  CAS  Google Scholar 

  55. Guan W, Zhang H (2013) Determination and study on residue and dissipation of benazolin-ethyl and quizalofop-p-ethyl in rape and soil. Int J Environ Anal Chem 93(6):679–691. doi:10.1080/03067319.2012.684047

    Article  CAS  Google Scholar 

  56. Sun J, Feng N, Tang C, Qin D (2012) Determination of cyantraniliprole and its major metabolite residues in pakchoi and soil using ultra-performance liquid chromatography-tandem mass spectrometry. Bull Environ Contam Toxicol 89(4):845–852. doi:10.1007/s00128-012-0752-2

    Article  CAS  Google Scholar 

  57. Wang L, Zhao P, Zhang F, Du F, Pan C (2012) Diafenthiuron residue and decline in pakchoi and soil under field application. Ecotoxicol Environ Saf 79:75–79. doi:10.1016/j.ecoenv.2011.12.002

    Article  CAS  Google Scholar 

  58. Zhao L, Chen X, Liu F, Ge J, You X (2013) Determination of monosulfuron-ester residues in grains, straw, green plants and soil of wheat by modified QuEChERS and LC-MS/MS. Anal Methods 5(9):2267–2272. doi:10.1039/c3ay40122g

    Article  CAS  Google Scholar 

  59. Wu Y, Liu X, Dong F, Xu J, Zheng Y (2012) Dissipation and residues of rimsulfuron in potato and soil under field conditions. Bull Environ Contam Toxicol 89(6):1264–1267. doi:10.1007/s00128-012-0850-1

    Article  CAS  Google Scholar 

  60. Drozdzyński D, Kowalska J (2009) Rapid analysis of organic farming insecticides in soil and produce using ultra-performance liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 394(8):2241–2247. doi:10.1007/s00216-009-2931-5

    Article  Google Scholar 

  61. Prestes OD, Padilla-Sánchez JA, Romero-González R, Grio SL, Frenich AG, Martínez-Vidal JL (2012) Comparison of several extraction procedures for the determination of biopesticides in soil samples by ultrahigh pressure LC-MS/MS. J Sep Sci 35(7):861–868. doi:10.1002/jssc.201101057

    Article  CAS  Google Scholar 

  62. Chen L, Li XS, Wang ZQ, Pan CP, Jin RC (2010) Residue dynamics of procymidone in leeks and soil in greenhouses by smoke generator application. Ecotoxicol Environ Saf 73(1):73–77. doi:10.1016/j.ecoenv.2009.07.006

    Article  CAS  Google Scholar 

  63. Dong F, Liu X, Cheng L, Chen W, Li J, Qin D, Zheng Y (2009) Determination of metaflumizone residues in cabbage and soil using ultra-performance liquid chromatography/ESI-MS/MS. J Sep Sci 32(21):3692–3697. doi:10.1002/jssc.200900338

    Article  CAS  Google Scholar 

  64. Wang YH, Li X, Zhou XM, Bai LY (2012) Simplified approach for the extraction of quinclorac from soils. Asian J Chem 24(5):2042–2044

    CAS  Google Scholar 

  65. Wu X, Xu J, Liu X, Dong F, Wu Y, Zhang Y, Zheng Y (2013) Determination of herbicide propisochlor in soil, water, and rice by quick, easy, cheap, effective, rugged, and safe (QuEChERS) method using by UPLC-ESI-MS/MS. Bull Korean Chem Soc 34(3):917–921. doi:10.5012/bkcs.2013.34.3.917

    Article  CAS  Google Scholar 

  66. You X, Liang L, Liu F (2014) Dissipation and residues of clethodim and its oxidation metabolites in a rape-field ecosystem using QuEChERS and liquid chromatography/ tandem mass spectrometry. Food Chem 143:170–174. doi:10.1016/j.foodchem.2013.07.090

    Article  CAS  Google Scholar 

  67. Zhang Q, Zhao Y, Fan S, Bai A, Li X, Pan C (2013) Dissipation and residues of bispyribac-sodium in rice and environment. Environ Monit Assess 185(12):9743–9749. doi:10.1007/s10661-013-3287-z

    Article  CAS  Google Scholar 

  68. Padilla-Sanchez JA, Plaza-Bolaños P, Romero-González R, Garrido-Frenich A, Martínez Vidal JL (2010) Application of a quick, easy, cheap, effective, rugged, and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols, and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spectrometry/mass spectrometry. J Chromatogr A 1217(36):5724–5731. doi:10.1016/j.chroma.2010.07.004

    Article  CAS  Google Scholar 

  69. Dreyer A, Thuens S, Kirchgeorg T, Radke M (2012) Ombrotrophic peat bogs are not suited as natural archives to investigate the historical atmospheric deposition of perfluoroalkyl substances. Environ Sci Technol 46(14):7512–7519. doi:10.1021/es204175y

    Article  CAS  Google Scholar 

  70. Bragança I, Plácido A, Paíga P, Domingues VF, Delerue-Matos C (2012) QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci Total Environ 433:281–289. doi:10.1016/j.scitotenv.2012.06.035

    Article  Google Scholar 

  71. Zhang F, Wang L, Zhou L, Wu D, Pan H, Pan C (2012) Residue dynamics of pyraclostrobin in peanut and field soil by QuEChERS and LC-MS/MS. Ecotoxicol Environ Saf 78:11–122. doi:10.1016/j.ecoenv.2011.11.003

    Google Scholar 

  72. Abd-Alrahman SH, Ahmed NS (2012) Dissipation of penconazole in tomatoes and soil. Bull Environ Contam Toxicol 89(4):873–876. doi:10.1007/s00128-012-0776-7

    Article  CAS  Google Scholar 

  73. Mrema EJ, Rubino FM, Colosio C (2013) Obsolete Pesticides—A Threat to Environment, Biodiversity, and Human Health. In: Simeonov LI, Macaev FZ, Simeonova BG (eds), vol 134, pp 1–21

  74. Gallo MA, Lawryk NJ (2001) Organic phosporus pesticides. In: Hayes W (ed) Handbook of pesticide toxicology, vol II. Academic Press, New York, pp 917–1090

    Google Scholar 

  75. Chambers HW (1992) Organophosphorus compunds: an overview. In: Chambers PE, Levi JE (eds) Organophosphates. Chemistry, fate, and effects. Academic Press, San Diego, CA, pp 3–18

    Chapter  Google Scholar 

  76. Pesticides Action Network, The List of the Lists (2009) Available at: http://www.pan-europe.info/Campaigns/pesticides/documents/cut_off/list%20of%20lists.pdf. Accessed

  77. US Environmental Protection Agency (2013) Pyrethroids and Pyrethrins. Available at: http://www.epa.gov/oppsrrd1/reevaluation/pyrethroids-pyrethrins.html. Accessed December 2013

  78. US Environmental Protection Agency (2013) What are Biopesticides? Available at: http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm. Accessed: Jan–Dec 2013

  79. Brondi SHG, De MacEdo AN, Vicente GHL, Nogueira ARA (2011) Evaluation of the QuEChERS method and gas chromatography-mass spectrometry for the analysis pesticide residues in water and sediment. Bull Environ Contam Toxicol 86(1):18–22. doi:10.1007/s00128-010-0176-9

    Article  CAS  Google Scholar 

  80. Quinete N, Wang J, Fernandez A, Castro J, Gardinali PR (2013) Outcompeting GC for the detection of legacy chlorinated pesticides: Online-SPE UPLC APCI/MSMS detection of endosulfans at part per trillion levels. Anal Bioanal Chem 405(18):5887–5899. doi:10.1007/s00216-013-6764-x

    Article  CAS  Google Scholar 

  81. Kvíčalová M, Doubravová P, Jobánek R, Jokešová M, Očenášková V, Süssenbeková H, Svobodova A (2012) Application of different extraction methods for the determination of selected pesticide residues in sediments. Bull Environ Contam Toxicol 89(1):21–26. doi:10.1007/s00128-012-0622-y

    Article  Google Scholar 

  82. Yurtkuran Z, Saygi Y (2013) Assessment of pesticide residues in Karaboǧaz Lake from KIzIlIrmak Delta, Turkey. Bull Environ Contam Toxicol 91(2):165–170. doi:10.1007/s00128-013-1037-0

    Article  CAS  Google Scholar 

  83. Temur C, Tiryaki O, Uzun O, Basaran M (2012) Adaptation and validation of QuEChERS method for the analysis of trifluralin in wind-eroded soil. J Environ Sci Health Part B Pestic Food Contam Agri Wastes 47(9):842–850. doi:10.1080/03601234.2012.693878

    Article  CAS  Google Scholar 

  84. Berlioz-Barbier A, Vauchez A, Wiest L, Baudot R, Vulliet E, Cren-Olive C (2014) Multi-residue analysis of emerging pollutants in sediment using QuEChERS-based extraction followed by LC-MS/MS analysis. Anal Bioanal Chem 406(4):1259–1266. doi:10.1007/s00216-013-7450-8

    Article  CAS  Google Scholar 

  85. Shi JW, Zhao YG, Fu ZJ, Li JG, Wang YF, Yang TC (2012) Development of a screening method for the determination of pcbs in water using QuEChERS extraction and gas chromatography-triple quadrupole mass spectrometry. Anal Sci 28(2):167–174. doi:10.2116/analsci.28.167

    Article  CAS  Google Scholar 

  86. Forina M, Lanteri S, Armanino C, Casolino MC, Casale M, P. O (2010) VPARVUS. An extendable package of programs for explorative data analysis, classification and regression analysis. Freely available from the authors on request. Department of Pharmacy, University of Genova, Genova

  87. Ciofi L, Fibbi D, Chiuminatto U, Coppini E, Checchini L, Del Bubba M (2013) Fully-automated on-line solid phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometric analysis at sub-ng/L levels of selected estrogens in surface water and wastewater. J Chromatogr A 1283:53–61. doi:10.1016/j.chroma.2013.01.084

    Article  CAS  Google Scholar 

  88. Vega-Morales T, Sosa-Ferrera Z, Santana-Rodriguez JJ (2012) Development and optimisation of an on-line solid phase extraction coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry methodology for the simultaneous determination of endocrine disrupting compounds in wastewater samples. J Chromatogr A 1230:66–76

    Article  CAS  Google Scholar 

  89. Kittlaus S, Schimanke J, Kempe G, Speer K (2013) Development and validation of an efficient automated method for the analysis of 300 pesticides in foods using two-dimensional liquid chromatography-tandem mass spectrometry. J Chromatogr A 1283:98–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors are grateful to Susan Mary Cadby, who revised the language of the manuscript. Financial support from MIUR (Ministry of Education, Universities and Research, Italy) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Del Bubba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruzzoniti, M.C., Checchini, L., De Carlo, R.M. et al. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: a critical review. Anal Bioanal Chem 406, 4089–4116 (2014). https://doi.org/10.1007/s00216-014-7798-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7798-4

Keywords

Navigation