Skip to main content
Log in

Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of cyclic biamperometry to viability and cytotoxicity assessments of human corneal epithelial cells has been investigated. Electrochemical measurements have been compared in PBS containing 5.0 mM glucose and minimal essential growth medium. Three different lipophilic mediators including dichlorophenol indophenol, 2-methyl-1,4-naphthoquinone (also called menadione or vitamin K3) and N,N,N′,N′-tetramethyl-p-phenylenediamine have been evaluated for shuttling electrons across the cell membrane to the external medium. Transfer of these electrons to ferricyanide in the extra cellular medium results in the accumulation of ferrocyanide. The amount of ferrocyanide is then determined using cyclic biamperometry and is related to the extent of cell metabolic activity and therefore cell viability. To illustrate cytotoxicity assessment of chemicals, hydrogen peroxide, benzalkonium chloride and sodium dodecyl sulfate have been chosen as sample toxins, the cytotoxicities of which have been evaluated and compared to values reported in the literature. Similar values have been reported using colorimetric assays; however, the simplicity of this electrochemical assay can, in principle, open the way to miniaturization onto lab-on-chip devices and its incorporation into tiered-testing approaches for cytotoxicity assessment.

After mediated reduction of ferricyanide by cell components, its reduced form, ferrocyanide, is quantitated using cyclic biamperometry in presence of excess ferricyanide. Concentration of ferrocyanide is then related to the extent of cell metabolic activity for viability/cytotoxicity assessments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ramirez CN, Antczak C, Djaballah H (2010) Cell viability assessment: toward content-rich platforms. Expert Opin Drug Dis 5(3):223–233

    Article  CAS  Google Scholar 

  2. Shoshan MC, Havelka AM, Neumann F, Linder S (2006) Sense and sensibility: the use of cell death biomarker assays in high-throughput anticancer drug screening and monitoring treatment responses. Expert Opin Drug Dis 1(6):585–594

    Article  CAS  Google Scholar 

  3. Kulkarni SR, Upadhye SB (2003) Microculture tetrazolium assay: an update. Indian Drugs 40(1):1–8

    CAS  Google Scholar 

  4. Patterson MKJ (1979) Measurement of growth and viability of cells in culture. Method Enzymol 58:141–152

    Article  Google Scholar 

  5. Cook JA, Mitchell JB (1981) Viability measurements in mammalian cell systems. Anal Biochem 179(1):1–7

    Article  Google Scholar 

  6. Hoskins JM, Meynell GG, Sanders FK (1956) A comparison of methods for estimating the viable count of a suspension of tumour cells. Exp Cell Res 11(2):297–305

    Article  CAS  Google Scholar 

  7. Moyer JD, Henderson JF (1983) Ultrasensitive assay for ribonucleoside triphosphates in 50-1000 cells. Application to studies with pyrazofurin and mycophenolic acid. Biochem Pharmacol 32(24):3831–3834

    Article  CAS  Google Scholar 

  8. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  9. Puleo DA, Holleran LA, Doremus RH, Bizios R (1991) Osteoblast responses to orthopedic implant materials in vitro. J Biomed Mater Res 25(6):711–723

    Article  CAS  Google Scholar 

  10. Allison DC, Ridolpho P (1980) Use of a trypan blue assay to measure the deoxyribonucleic acid content and radioactive labeling of viable cells. J Histochem Cytochem 28(7):700–703

    Article  CAS  Google Scholar 

  11. Phillips H, Terryberry J (1957) Counting actively metabolizing tissue cultured cells. Exp Cell Res 13(2):341–347

    Article  CAS  Google Scholar 

  12. King M (2000) Detection of dead cells and measurement of cell killing by flow cytometry. J Immunol Methods 243(1–2):155–166

    Article  CAS  Google Scholar 

  13. Giuliano KA, Post PL, Hahn KM, Taylor DL (1995) Fluorescent protein biosensors: measurement of molecular dynamics in living cells. Annu Rev Bioph Biom 24:405–434

    Article  CAS  Google Scholar 

  14. Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry-US 33(22):6739–6749

    Article  CAS  Google Scholar 

  15. Slater K (2001) Cytotoxicity tests for high-throughput drug discovery. Curr Opin Biotech 12(1):70–74

    Article  CAS  Google Scholar 

  16. Sevin BU, Perras JP, Averette HE, Donato DM, Penalver M (1993) Chemosensitivity testing in ovarian cancer. Cancer 71(4):1613–1620

    Article  CAS  Google Scholar 

  17. Allen JC (1988) Sodium and potassium content and viability of mouse mammary gland tissue and acini. J Dairy Sci 71(3):633–642

    Article  CAS  Google Scholar 

  18. Baronian KHR, Downard AJ, Lowen RK, Pasco N (2002) Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method. Appl Microbiol Biot 60(1–2):108–113

    CAS  Google Scholar 

  19. Ertl P, Mikkelsen SR (2001) Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal Chem 73(17):4241–4248

    Article  CAS  Google Scholar 

  20. Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, Gotoh M, Karube I (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72(1):210–216

    Article  CAS  Google Scholar 

  21. Rabinowitz JD, Vacchino JF, Beeson C, McConnell HM (1998) Potentiometric measurement of intracellular redox activity. J Am Chem Soc 120(10):2464–2473

    Article  CAS  Google Scholar 

  22. Edinger A (2010) Unequal in the absence of death: a novel screen identifies cytotoxic compounds selective for cells with activated Akt. Cancer Biol Ther 10(12):1262–1265

    Article  CAS  Google Scholar 

  23. McNamee P, Hibatallah J, Costabel-Farkas M et al (2009) A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: eye irritation. Regul Toxicol Pharm 54(2):197–209

    Article  CAS  Google Scholar 

  24. Mann TS, Mikkelsen SR (2008) Antibiotic susceptibility testing at a screen-printed carbon electrode array. Anal Chem 80(3):843–848

    Article  CAS  Google Scholar 

  25. Ertl P, Robello E, Battaglini F, Mikkelsen SR (2000) Rapid antibiotic susceptibility testing via electrochemical measurement of ferricyanide reduction by Escherichia coli and Clostridium sporogenes. Anal Chem 72(20):4957–4964

    Article  CAS  Google Scholar 

  26. Rahimi M, Mikkelsen SR (2010) Cyclic biamperometry. Anal Chem 82(5):1779–1785

    Article  CAS  Google Scholar 

  27. Rahimi M, Mikkelsen SR (2011) Cyclic biamperometry at micro-interdigitated electrodes. Anal Chem 83(19):7555–7559

    Article  CAS  Google Scholar 

  28. Lu Q, Zhao J, Wang M, Wang Z (2011) Electrochemical evaluation of the controlled release behaviors of the cyclodextrin inclusion complexes on the drug deliveries to microbial cell. Int J Electrochem Sc 6(9):3868–3877

    CAS  Google Scholar 

  29. Kostesha NV, Almeida JRM, Heiskanen AR, Gorwa-Grauslund MF, Hahn-Hagerdal B, Emneus J (2009) Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae. Anal Chem 81(24):9896–9901

    Article  CAS  Google Scholar 

  30. Zhao J, Wang Z, Fu C, Liu J, He Q (2008) Consistency of the mediated electrochemical method and the fluorescence method in monitoring the catabolic activities of yeasts. Anal Lett 41(16):2963–2971

    Article  CAS  Google Scholar 

  31. Heiskanen A, Spegel C, Kostesha N, Lindahl S, Ruzgas T, Emneus J (2009) Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Anal Biochem 384(1):11–19

    Article  CAS  Google Scholar 

  32. Spegel CF, Heiskanen AR, Kostesha N, Johanson TH, Gorwa-Grauslund M-F, Koudelka-Hep M, Emneus J, Ruzgas T (2007) Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells. Anal Chem 76(23):8919–8926

    Article  Google Scholar 

  33. Mauzeroll J, Bard AJ (2004) Scanning electrochemical microscopy of menadione–glutathione conjugate export from yeast cells. PNAS 101(21):7862–7867

    Article  CAS  Google Scholar 

  34. Olsen KW, Bantseev V, Choh V (2011) Menadione degrades the optical quality and mitochondrial integrity of bovine crystalline lenses. Mol Vis 17:270–278

    CAS  Google Scholar 

  35. Chen Q, Cederbaum AI (1997) Menadione cytotoxicity to Hep G2 cells and protection by activation of nuclear factor-κB. Mol Pharmacol 52(4):648–657

    CAS  Google Scholar 

  36. Zhao J, Wang M, Yang Z, Wang Z, Wang H, Yang Z (2007) The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae. Anal Chim Acta 597(1):67–74

    Article  CAS  Google Scholar 

  37. Koyama K, Shimazu Y (2005) Benzalkonium chlorides. In: Suzuki O, Watanabe K (eds) Drugs and Poisons in Humans. Springer, pp 407–413

  38. Cheng W, Wang C-H, Chen J-C (2003) Effect of benzalkonium chloride stress on immune resistance and susceptibility to Lactococcus garvieae in the giant freshwater prawn Macrobrachium rosenbergii. Dis Aquat Org 53(3):223–229

    Article  Google Scholar 

  39. Ayaki M, Iwasawa A, Inoue Y (2010) Toxicity of antiglaucoma drugs with and without benzalkonium chloride to cultured human corneal endothelial cells. Clin Ophthalmol 4:1217–1222

    Article  CAS  Google Scholar 

  40. Xu K-P, Zhang J, Yu F-SX (2004) Corneal organ culture model for assessing epithelial recovery after surfactant exposure. J Toxicol-Cutan Ocul 1:29–40

    Google Scholar 

  41. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 11:1518–1520

    Article  Google Scholar 

  42. Konynenbelt BJ, Mlnarik DS, Ubels JL (2011) Effects of peroxide-based contact lens-disinfecting systems on human corneal epithelial cells in vitro. Eye Contact Lens 37(5):286–297

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Ontario Ministry of Education and the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. Helpful comments from reviewers of this work are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahimi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, M., Youn, HY., McCanna, D.J. et al. Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells. Anal Bioanal Chem 405, 4975–4979 (2013). https://doi.org/10.1007/s00216-013-6843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6843-z

Keywords

Navigation