Skip to main content

Advertisement

Log in

Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, the synergistic biological action of five celandine alkaloids in normal and cancer cells was investigated by capillary electrophoresis with light-emitting diode-induced native fluorescence detection. The specific capacity of each alkaloid to penetrate into the cells was estimated by monitoring alkaloid concentration decreases in the cell medium during incubation with murine fibroblast NIH/3T3, mouse melanoma B16F10, and human breast cancer MCF7 cell lines. Mixtures of isoquinoline alkaloids containing protopine, chelidonine, sanguinarine, allocryptopine, and stylopine were applied to cell cultures for 20 and 40 min, and the content of alkaloids in the cell media was measured by capillary electrophoresis (CE). CE separation of isoquinoline alkaloids was performed in 30 mM phosphate buffer (pH 2.5). As these alkaloids have native fluorescence, they were directly detected using the commercially available UV light-emitting diode without troublesome fluorescent derivatization. The results showed a differential ability of celandine alkaloids to penetrate into the normal and cancer cell interior, which was inversely proportional to their cytotoxic activity. While the most effective transport of celandine alkaloids from the cell medium to the cell interior was observed for normal murine fibroblast NIH/3T3 cells (about 55% of total content), cytotoxicity tests demonstrated selective and profound apoptotic effects of a five-alkaloid combination in the mouse melanoma B16F10 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

References

  1. Lee J, Shon MY, Jang DS, Ha TJ, Hwang SW, Nam SH, Seo E-K, Park KH, Yang MS (2005) Agric Chem Biotechnol 48:198–201

    CAS  Google Scholar 

  2. Kadan G, Gözler T, Shamma M (1990) J Nat Prod 53:531–532

    Article  CAS  Google Scholar 

  3. Meng F, Zuo G, Hao X, Wang G, Xiao X, Zhang J, Xu G (2009) J Ethnopharmacol 125:494–496

    Article  CAS  Google Scholar 

  4. Zuo G-Y, Meng F-Y, Hao X-Y, Zhang Y-L, Wang G-C, Xu G-L (2008) J Pharm Pharmaceut Sci 11:90–94

    Article  CAS  Google Scholar 

  5. Kaminskyy V, Lootsik MD, Stoika R (2006) Centr Eur J Biol 1:2–15

    Article  CAS  Google Scholar 

  6. Cho K-M, Yoo I-D, Kim W-G (2006) Biol Pharm Bull 29:2317–2320

    Article  CAS  Google Scholar 

  7. Hammerova J, Uldrijan S, Taborska E, Slaninova I (2011) J Derm Sci 62:22–35

    CAS  Google Scholar 

  8. Philchenkov A, Kaminskyy V, Zavelevich M, Stoika R (2008) Toxicol in Vitro 22:287–295

    Article  CAS  Google Scholar 

  9. Panzer A, Joubert AM, Bianchi PC, Hamel E, Seegers JC (2001) Eur J Cell Biol 80:111–118

    Article  CAS  Google Scholar 

  10. Leveque D, Jehl F (2007) J Clin Pharmacol 47:579–588

    Article  CAS  Google Scholar 

  11. Kaminskyy V, Lin K-W, Filyak Y, Stoika R (2008) Cell Biol Int 32:271–277

    Article  CAS  Google Scholar 

  12. Ding P-L, Chen L-Q, Lu Y, Li Y-G (2012) J Pharm Biomed Anal 60:44–50

    CAS  Google Scholar 

  13. Chèze M, Lenoan A, Deveaux M, Pépin G (2008) Forensic Sci Int 176:58–66

    Article  Google Scholar 

  14. Beyer J, Peters FT, Kraemer T, Maurer HH (2007) J Mass Spectrom 42:621–633

    Article  CAS  Google Scholar 

  15. Zang XH, Li CR, Wu QH, Wang C, Han DD, Wang Z (2007) Chinese Chem Letters 18:316–318

    Article  CAS  Google Scholar 

  16. Namera A, Yashiki M, Hirose Y, Yamaji S, Tani T, Kojima T (2002) Forensic Sci Int 130:34–43

    Article  CAS  Google Scholar 

  17. Clevenger CV, August TF, Shaw LM (1991) J Anal Toxicol 15:151–154

    CAS  Google Scholar 

  18. Zhou H, Tai Y, Sun C, Pan Y (2005) Phytochem Anal 16:328–333

    Article  CAS  Google Scholar 

  19. Mulac D, Humpf H-U (2011) Toxicology 282:112–121

    Article  CAS  Google Scholar 

  20. Kursinszki L, Sarközi A, Kery A, Szöke E (2006) Chromatographia 63:S131–S135

    Article  CAS  Google Scholar 

  21. Suchomelova J, Bochořakova H, Paulova H, Musil P, Taborska E (2007) J Pharm Biomed Anal 44:283–287

    Article  CAS  Google Scholar 

  22. Fabre N, Claparols C, Richelme S, Angelin M-L, Fouraste I, Moulis C (2000) J Chromatogr A 904:35–46

    Article  CAS  Google Scholar 

  23. Pietta PG, Mauri PL, Gardana C, Colombo ML, Tome F (1995) Phytochem Anal 6:196–233

    Article  CAS  Google Scholar 

  24. Liu Y-M, Sheu S-J (1993) J Chromatogr 634:329–336

    Article  CAS  Google Scholar 

  25. Stuppner H, Sturm S, Mulinacci N, Vincieri H (1993) Chromatographia 37:579–585

    Article  CAS  Google Scholar 

  26. Cataldi TRI, Bianco G (2008) Methods in Mol Biol 384:171–203

    CAS  Google Scholar 

  27. Kulp M, Bragina O, Kogerman P, Kaljurand M (2011) J Chromatogr A 1218:5298–5304

    Article  CAS  Google Scholar 

  28. Yang X-W, Teng J, Wang Y, Xu W (2009) Phytother Res 23:56–60

    Article  CAS  Google Scholar 

  29. Zhou X-J, Rahmani R (1992) Drugs 44:1–16

    Article  CAS  Google Scholar 

  30. Lopus M, Panda D (2006) FEBS J 273:2139–2150

    Article  CAS  Google Scholar 

  31. Bhadra K, Suresh KG (2011) Med Res Rev 31:821–862

    Article  CAS  Google Scholar 

  32. Panzer A, Joubert AM, Bianchi PC, Hamel E, Seegers JC (2001) Eur J Cell Biol 80:111–118

    Article  CAS  Google Scholar 

  33. Chen C-H, Guh J-H, Liao C-H, Pan S-L, Chang Y-L, Teng C-M (2012) Cancer Lett 315:1–11

    Article  CAS  Google Scholar 

  34. Habermehl D, Kammerer B, Handrick R, Eldh T, Gruber C, Cordes N, Daniel PT, Plasswilm L, Bamberg M, Belka C, Jendrossek V (2006) BMC Cancer 17:6–14

    Google Scholar 

  35. Panzer A, Seegers JC (1998) Proc Am Assoc Cancer Res 39:7–12

    Google Scholar 

  36. Soucek K, Kamaid A, Phung AD, Kubala L, Bulinski JC, Harper RW, Eiserich JP (2006) Prostate 66:954–965

    Article  CAS  Google Scholar 

  37. Hammond J, Cai D, Verhey KJ (2008) Curr Opin Cell Biol 20:71–76

    Article  CAS  Google Scholar 

  38. Kuroda H, Saito K, Kuroda M, Suzuki Y (2010) Virchows Arch 457:477–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kulp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulp, M., Bragina, O. Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Anal Bioanal Chem 405, 3391–3397 (2013). https://doi.org/10.1007/s00216-013-6755-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6755-y

Keywords

Navigation