Skip to main content
Log in

Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Poly(lactic-co-glycolic acid) particles in the 200–400-nm size range were formulated through nanoprecipitation and solvent evaporation methods. Different concentrations of the polymer and stabilizer (Pluronic® F 68) were tested in order to identify the best conditions for making poly(lactic-co-glycolic acid) particles of suitable size, stable in time, and to be used as carriers for brain-targeting drugs. The particles with the best characteristics for delivery system design were those formulated by nanoprecipitation with an organic/water phase ratio of 2:30, a polymer concentration of 25 mg/mL, and a surfactant concentration of 0.83 mg/mL; their surface charge was reasonably negative (approximately -27 mV) and the average size of the almost monodisperse population was roughly 250 nm. Particle characterization was obtained through ζ-potential measurements, scanning electron microscope observations, and particle size distribution determinations; the latter achieved by both photon-correlation spectroscopy and sedimentation field flow fractionation. Sedimentation field flow fractionation, which is considered more reliable than photon-correlation spectroscopy in describing the possible particle size distribution modifications, was used to investigate the effects of 3 months of storage at 4 °C had on the lyophilized particles.

Particle size ditribution from the SdFFF and the PCS techniques

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Expert Rev Mol Diagn 9(4):325–341

    Article  Google Scholar 

  2. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Polym Degrad Stab 95(11):2126–2146

    Article  CAS  Google Scholar 

  3. Bala I, Hariharan S, Ravi Kumar MNV (2004) Ther Drug Carrier Syst 21(5):387–422

    Article  CAS  Google Scholar 

  4. Acharya S, Sahoo SK (2011) Adv Drug Deliv Rev 63(3):170–183

    Article  CAS  Google Scholar 

  5. Panyam J, Labhasetwar V (2003) Adv Drug Deliv Rev 55:329–347

    Article  CAS  Google Scholar 

  6. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) Int J Pharm 415(1–2):34–52

    Article  CAS  Google Scholar 

  7. Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Cohen Stuart M, Albericio F, Torensma R, Figdor CG (2011) J Control Release 144(2):118–126

    Article  Google Scholar 

  8. Feczkó T, Tóth J, Dósa Gy, Gyenis J (2011) Chem Eng Process Process Intensif 50(8):846–853

    Article  Google Scholar 

  9. Nafee N, Schneider M, Schaefer UF, Lehr CL (2009) Int J Pharm 381(2):130–139

    Article  CAS  Google Scholar 

  10. Astete CE, Sabliov CM (2006) J Biomater Sci Polym Ed 17(3):247–289

    Article  CAS  Google Scholar 

  11. Allemann E, Gurny R, Doelker E (1992) Int J Pharm 87:247–253

    Article  CAS  Google Scholar 

  12. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Int J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  13. Quintanar-Guerrero D, Ganem-Quintanar A, Allemann E, Fessi H, Doelker E (1998) J Microencapsul 15:107–119

    Article  CAS  Google Scholar 

  14. Choi SW, Kwon HY, Kim WS, Kim JH (2002) Colloids Surf A Physicochem Eng Asp 201:283–289

    Article  CAS  Google Scholar 

  15. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) J Control Release 25:89–98

    Article  CAS  Google Scholar 

  16. Fessi H, Devissaguet J-P, Puisieux F, Thies C (1992) US Patent 593:522

    Google Scholar 

  17. O'Donnell PB, McGinity JW (1997) Adv Drug Deliv Rev 28(1):25–42

    Article  Google Scholar 

  18. Taluja A, Seok Youn Y, Han Bae Y (2007) Mater Chem 17:4002–4014

    Article  CAS  Google Scholar 

  19. Ruozi B, Tosi G, Leo E, Vandelli MA (2007) Talanta 73(1):12–22

    Article  CAS  Google Scholar 

  20. Schimpf ME, Caldwell K, Giddings JC (eds) (2000) Field-flow fractionation handbook. Wiley, New York

    Google Scholar 

  21. Kim S, Williams R, Caldwell KD (eds) (2011) Field-flow fractionation in biopolymer analysis. Springer, Heidelberg

    Google Scholar 

  22. Contado C, Argazzi R (2009) J Chromatogr A 1216:9088–9098

    Article  CAS  Google Scholar 

  23. Contado C, Argazzi R (2011) J Chromatogr A 1218(27):4179–4187

    Article  CAS  Google Scholar 

  24. Williams PS, Giddings JC (1994) Anal Chem 66:4215–4228

    Article  CAS  Google Scholar 

  25. Faisant N, Battu S, Senftleber F, Benoit JP, Cardot PJP (2003) J Sep Sci 26:1407–1416

    Article  CAS  Google Scholar 

  26. Jeon HJ, Jeong YI, Jang MK, Park YH, Nah JW (2000) Int J Pharm 207:99–108

    Article  CAS  Google Scholar 

  27. Mainardes RM, Evangelista RC (2005) Int J Pharm 290:137–144

    Article  CAS  Google Scholar 

  28. Santander-Ortega MJ, Jódar-Reyes AB, Csabac N, Bastos-González D, Ortega-Vinuesa JL (2006) J Colloid Interface Sci 302:522–529

    Article  CAS  Google Scholar 

  29. Leo E, Scatturin S, Vighi E, Dalpiaz A (2006) J Nanosci Nanotechnol 6(9–10):3070–3079

    Article  CAS  Google Scholar 

  30. Csaba N, Camano P, Sanchez A, Domınguez F, Alonso MJ (2005) Biomacromolecules 6:271–278

    Article  CAS  Google Scholar 

  31. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Adv Drug Deliv Rev 58:1688–1713

    Article  CAS  Google Scholar 

  32. Contado C, Dalpiaz A, Leo E, Zborowski M, Williams PS (2007) J Chromatogr A 1157:321–335

    Article  CAS  Google Scholar 

  33. Jawahar N, Eagappanath T, Venkatesh N, Jubie S, Samanta MK (2009) Int J Pharm Tech Res 1(2):390–393

    CAS  Google Scholar 

  34. Song KC, Lee HS, Choung IY, Cho KI, Ahn Y, Choi EJ (2006) Colloids Surf A Physicochem Eng Asp 276:162–167

    Article  CAS  Google Scholar 

  35. Holzer M, Vogel V, Mäntele W, Schwartz D, Haase W, Langer K (2009) Eur J Pharm Biopharm 72(2):428–437

    Article  CAS  Google Scholar 

  36. Hansen ME, Giddings JC (1989) Anal Chem 61(8):811–819

    Article  CAS  Google Scholar 

  37. Lee S, Giddings JC (1988) Anal Chem 60(21):2328–2333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Unife FAR 2010 and by PRIN2009ZSC5K2_004. Thanks are due to M. Hanuskova for her kind technical support with the PCS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catia Contado.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contado, C., Vighi, E., Dalpiaz, A. et al. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation. Anal Bioanal Chem 405, 703–711 (2013). https://doi.org/10.1007/s00216-012-6113-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6113-5

Keywords

Navigation