Skip to main content
Log in

Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An immobilised enzyme reactor (IMER) in the form of capillary monolith was developed for a micro-liquid chromatography system. The plain monolith was obtained by in situ thermal copolymerisation of glycidyl methacrylate and ethylene dimethacrylate in a fused silica capillary (200 × 0.53 mm ID) by using n-propanol/1,4-butanediol as porogen. The enzyme, α-chymotrypsin (CT), was covalently attached onto the monolith via triazole ring formation by click-chemistry. For this purpose, the monolithic support was treated with sodium azide and reacted with the alkyne carrying enzyme derivative. CT was covalently linked to the monolith by triazole-ring formation. The activity behaviour of monolithic IMER was investigated in a micro-liquid chromatography system by using benzoyl-l-tyrosine ethyl ester (BTEE) as synthetic substrate. The effects of mobile-phase flow rate and substrate feed concentration on the final BTEE conversion were investigated under steady-state conditions. In the case of monolithic IMER, the final substrate conversion increased with increasing feed flow rate and increasing substrate feed concentration. Unusual behaviour was explained by the presence of convective diffusion in the macropores of monolith. The results indicated that the monolithic-capillary IMER proposed for micro-liquid chromatography had significant advantages with respect to particle-based conventional high-performance liquid chromatography–IMERs.

The variation of DAD signal and final BTEE conversion with the flow rate of substrate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Girelli AM, Mattei E (2005) J Chromatogr B 819(1):3–16

    Article  CAS  Google Scholar 

  2. Peterson DS, Rohr T, Svec F, Frechet JMJ (2002) Anal Chem 74(16):4081–4408

    Article  CAS  Google Scholar 

  3. Dulay M, Baca QJ, Zare RN (2005) Anal Chem 77(14):4604–4610

    Article  CAS  Google Scholar 

  4. Krenkova J, Bilkova Z, Foret F (2005) J Sep Sci 28(14):1675–1684

    Article  CAS  Google Scholar 

  5. Duan J, Liang Z, Yang C, Zhang J, Zhang L, Zhang W, Zhang Y (2006) Proteomics 6(2):412–419

    Article  CAS  Google Scholar 

  6. Peterson DS, Rohr T, Svec F, Frechet JMJ (2002) Anal Chem 74(16):4081–4088

    Article  CAS  Google Scholar 

  7. Krenkova J, Lacher N, Svec F (2009) Anal Chem 81(5):204–212

    Article  Google Scholar 

  8. Lim YP, Josic DH, Brown CJ, Hixson DC (2005) J Chromatogr A 1065(1):39–43

    Article  CAS  Google Scholar 

  9. Platonova GA, Surzhik MA, Tennikova TB, Vlasov GP, Timkovskii AL (1999) Russ J Bioorg Chem 25:166–171

    Google Scholar 

  10. Mancini F, Naldi M, Cavrini V, Andrisano V (2007) J Chromatogr A 1175(2):217–226

    Article  CAS  Google Scholar 

  11. Vodopivec M, Podgornik A, Berovic M, Strancar A (2003) J Chromatogr B 795:105–113

    Article  CAS  Google Scholar 

  12. Luo Q, Mao X, Kong L, Huang X, Zou H (2002) J Chromatogr B 776(2):139–147

    Article  CAS  Google Scholar 

  13. Podgornik H, Podgornik A (2002) Enzyme Microb Technol 31(6):855–861

    Article  CAS  Google Scholar 

  14. Bencina M, Bencina K, Strancar A, Podgornik A (2005) J Chromatogr A 1065(1):83–91

    Article  CAS  Google Scholar 

  15. Bencina M, Bencina K, Strancar A, Podgornik A (2007) J Chromatogr A 1160(1–2):176–183

    CAS  Google Scholar 

  16. Calleri E, Temporini C, Gasparrini F, Simone P, Villani C, Ciogli A, Massolini G (2011) J Chromatogr A 1218(49):8937–8945

    Article  CAS  Google Scholar 

  17. Temporini C, Calleri E, Campese D, Cabrera K, Felix G, Massolini GJ (2007) Sep Sci 30(17):3069–3076

    Article  CAS  Google Scholar 

  18. Josic D, Schwinn H, Strancar A, Podgornik A, Barut M, Lim YP, Vodopivec M (1998) J Chromatogr A 803(1–2):61–71

    Google Scholar 

  19. Temporini C, Dolcini L, Abee A, Calleri E, Calleri M, Galliano M, Caccialanza G, Massolini G (2008) J Chromatogr A 1183(1–2):65–75

    CAS  Google Scholar 

  20. Delattre C, Michaud P, Vijayalakshmi MA (2008) J Chromatogr B 861(2):203–208

    Article  CAS  Google Scholar 

  21. Vodopivec M, Bcrovic M, Jancar J, Podgornik A, Strancar A (2000) Anal Chim Acta 407(1–2):105–110

    Article  CAS  Google Scholar 

  22. Slater MD, Frechet JMJ, Svec F (2009) J Sep Sci 32(1):3221–3228

    Article  Google Scholar 

  23. Sun X, Lin D, He X, Chen L, Zhang Y (2010) Talanta 82(1):404–408

    Article  CAS  Google Scholar 

  24. Sun X, He X, Chen L, Zhang Y (2011) Anal Bioanal Chem 399(10):3407–3413

    Article  CAS  Google Scholar 

  25. Miriam K, Nicola H (2011) New J Chem 35(3):681–690

    Article  Google Scholar 

  26. Temporini C, Calleri E, Campese D, Cabrera K, Felix G, Massolini G (2007) J Sep Sci 30(17):3069–3076

    Article  CAS  Google Scholar 

  27. Temporini C, Calleri E, Campese D, Cabrera K, Felix G, Massolini G (2009) J Sep Sci 32(8):1120–1128

    Article  CAS  Google Scholar 

  28. Ponomareva EA, Kartuzova VE, Vlakh EG, Tennikova TB (2010) J Chromatogr B 878(5–6):567–574

    Article  CAS  Google Scholar 

  29. Kunarti ES, Moran G (2011) Asian J Chem 23(9):3940–3944

    CAS  Google Scholar 

  30. Bilici Z, Çamli ST, Unsal E, Tuncel A (2004) Anal Chim Acta 516:125–133

    Article  CAS  Google Scholar 

  31. Yurtsever A, Saracoğlu B, Tuncel A (2009) Electrophoresis 30(4): 589–598

    Google Scholar 

  32. Slater M, Snauko M, Svec F, Fréchet JMJ (2006) Anal Chem 78(14):4969–4975

    Article  CAS  Google Scholar 

  33. Xu MC, Peterson DS, Rohr T, Svec F, Frechet JMJ (2003) Anal Chem 75(4):1011–1021

    Article  CAS  Google Scholar 

  34. Svec F, Frechet JMJ (1999) Ind Eng Chem Res 38(1):34–48

    Article  CAS  Google Scholar 

  35. Josic D, Strancar A (1999) Ind Eng Chem Res 38(2):333–342

    Article  CAS  Google Scholar 

  36. Podgornik A, Barut M, Jancar J, Strancar A (1999) J Chromatogr A 848(1–2):51–60

    CAS  Google Scholar 

  37. Tennikova TB, Freitag R (2000) J High Resolut Chromatogr 23(1):27–38

    Article  CAS  Google Scholar 

  38. Stigter ECA, de Jong GJ, van Bennekom WP (2007) Anal Bioanal Chem 389(6):1967–1977

    Article  CAS  Google Scholar 

  39. Stigter ECA, de Jong GJ, van Bennekom WP (2008) Anal Chim Acta 619(2):231–238

    Article  CAS  Google Scholar 

  40. Stigter ECA, de Jong GJ, van Bennekom WP (2009) Biosens Bioelectron 24(7):2184–2190

    Article  CAS  Google Scholar 

  41. Zhou H, Ning Z, Wang F, Seebun D, Figeys D (2011) FEBS J 278(20):3796–3806

    Article  CAS  Google Scholar 

  42. Çicek H, Tuncel A (1998) J Polym Sci A Polym Chem Ed 36(4):543–552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tuncel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çelebi, B., Bayraktar, A. & Tuncel, A. Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry. Anal Bioanal Chem 403, 2655–2663 (2012). https://doi.org/10.1007/s00216-012-6075-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6075-7

Keywords

Navigation