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Abstract The information used to build proteins is stored in
the genetic material of every organism. In nature, ribosomes
use 20 native amino acids to synthesize proteins in most
circumstances. However, laboratory efforts to expand the
genetic repertoire of living cells and organisms have success-
fully encoded more than 80 nonnative amino acids in E. coli,
yeast, and other eukaryotic systems. The selectivity, fidelity,
and site-specificity provided by the technology have enabled
unprecedented flexibility in manipulating protein sequences
and functions in cells. Various biophysical probes can be
chemically conjugated or directly incorporated at specific
residues in proteins, and corresponding analytical techniques
can then be used to answer diverse biological questions. This
review summarizes themethodology of genetic code expansion
and its recent progress, and discusses the applications of
commonly used analytical methods.
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Background

Proteins made in different lengths and arrangements from 20
amino acids carry out diverse catalytic, mechanical or struc-
tural functions in almost every step of cellular processes. In

living cells and organisms, genetic information determining
the organization of amino acid residues is stored in the
chains of nucleotides, in which every three bases form a
codon [1]. There are 61 three-base codons encoding 20
native amino acids and three remaining codons for transla-
tion termination [2]. The correspondence between codons
and amino acids or translation termination is ensured by cell
machineries and pathways, and such connection is nearly
universal among all domains of life [3]. In 1976, Cone et al.
identified a selenocysteine-containing bacterial protein for-
mate dehydrogenase [4], and in 1986, Chambers et al. and
Ziononi et al. independently reported that selenocysteine
was encoded by the UGA codon, a commonly used termi-
nation codon [5, 6]. In 2002, Srinivasan et al. and Hao et al.
reported the 22nd genetically encoded amino acid pyrroly-
sine, which is used by methanogens in response to the
amber UAG codon [7, 8]. The exceptional selenocysteine
and pyrrolysine are examples of the natural expansion of
genetic codes of organisms for access to ribosomally syn-
thesized unusual proteins. Readers interested in these topics
can find useful information in related review papers [9, 10].

Researchers have devoted tremendous efforts to the de-
velopment of methods that can manipulate protein structures
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and functions in vitro and in living cells [11, 12]. The major
driving forces are to generate research tools for understand-
ing of biology and protein reagents with new or improved
properties. Proteins can be derivatized through the native
cysteine or lysine side chains that are reactive to maleimides
or N-hydroxysuccinimide (NHS) esters [13]. In addition,
chemical and enzymatic transformations have been devel-
oped to convert native amino acid residues or peptide ter-
mini to reactive handles through which conjugation can be
achieved [14, 15]. Solid-phase chemistry has also been used
to synthesis peptides containing nonnative building blocks
[16]. Although it is not practical to directly synthesize large
proteins, a handful of peptide ligation reactions can be used
to join multiple chemically synthesized peptides, or chemi-
cally synthesized peptides with peptides generated by
intein-based technology [17, 18]. A detailed discussion of
the abovementioned technology is beyond the scope of this
review. Instead, readers can refer to appropriate review
articles [13, 16, 17].

Nonnative amino acids can be introduced into proteins by
hijacking cell-translation machinery. For example, if a non-
native amino acid that is structurally close to a canonical
amino acid is used to culture an auxotrophic bacterial strain,
the nonnative amino acid may bypass fidelity checks in the
aminoacylation and translation steps and be globally incor-
porated into proteins in cells [19, 20]. In addition, transfer
RNAs (tRNAs) “mischarged” with nonnative amino acids
can be prepared in vitro under special reaction conditions, or
by ligating truncated tRNAs with chemically aminoacylated
nucleotides [21, 22]. In both cases, the resulting aminoacy-
lated tRNAs can be used by ribosomes to synthesize non-
native amino acid-containing proteins. This can be done in
cell-free translation systems or in living cells into which
nonnative aminoacylated tRNAs are delivered [23, 24]. If
the corresponding tRNAs have been engineered to harbor
unusual anticodons (e.g. nonsense termination codons or
extended four-base codons), these nonnative amino acids
can then be incorporated into proteins at particular residue
sites whose genetic sequences have been mutated to the
corresponding unusual codons [25, 26]. It is worth noting
that nonsense suppressors exist naturally in many bacteria,
yeast, and other eukaryotic cells, although they typically use
native amino acids [27].

All above methods are valuable, but each has profound
limitations. The extracellular nature of these methods has
restricted the synthesis of proteins difficult to fold and the
production of proteins on a large scale. In particular, it is
often tedious and sometimes even impossible to use these
modified proteins for interrogation of intracellular biology.
Additional methods have been developed to genetically
encode all major components needed for the incorporation
of nonnative amino acids [28]. Orthogonal tRNA/synthetase
pairs can be engineered and recombinantly expressed in

living cells and organisms, which use unusual codons to
integrate nonnative amino acids into proteins. Nonnative
amino acids supplied in the culture media for bacterial,
yeast, insect, or mammalian cells are then incorporated into
cellular proteins by cell machineries. To date, the technolo-
gy is available for genetic encoding of more than 80 nonna-
tive amino acids harboring various reactive conjugation
handles, photo-reactive side chains, pre-installed post-
translational modifications (PTMs), fluorescent side chains,
metal-chelating functional groups, and other useful side
chains [29]. It has enabled the direct and precise manipu-
lation of protein structures and functions in living cells and
organisms with unprecedented flexibility. Here, we briefly
review the general methodology of expanding the genetic
code and its recent advances, and focus on its application to
analytical and bioanalytical chemistry. Many important
aspects (e.g. those related to cell biology, therapy and vac-
cine development, protein design and evolution with addi-
tional codons) are not covered in this review. Interested
readers may refer to other recent reviews [30, 31].

General methodology

To integrate a nonnative amino acid into the genetic code of an
organism, one must first identify an aminoacyl-tRNA synthe-
tase that charges the corresponding tRNAwith that nonnative
amino acid. Importantly, the synthetase should not recognize
cell-endogenous tRNAs and amino acids, and the tRNA must
not crosstalk with any endogenous synthetases. Such a tRNA/
synthetase pair is referred as an orthogonal pair. The orthog-
onal tRNA must be engineered to respond to an unusual
codon (e.g. a nonsense codon or a four-base codon). It is also
important that the nonnative amino acid is metabolically sta-
ble and can be introduced into cells in adequate quantity. The
nonnative amino acid cannot be a substrate of endogenous
synthetases, or it will globally replace residues of cellular
proteins. Furthermore, the resulting aminoacylated tRNA
must be compatible with protein translation machineries, for
example elongation factors and the ribosome.

Although it seems a daunting task, researchers have
developed procedures integrating positive and negative se-
lection cycles to generate orthogonal tRNA/synthetase pairs
for encoding nonnative amino acids [31]. When an orthog-
onal tRNA/synthetase pair is expressed in cells in the pres-
ence of the nonnative amino acid, the nonnative amino acid
is specifically acylated to the engineered orthogonal tRNA.
The genetic codon of the target protein residue has to be
mutated to an unusual codon, so the ribosome will use the
aminoacylated nonnative tRNA when reaching the unusual
codon in the messenger RNA (mRNA). The nonnative
amino acid is then site-specifically introduced into the target
protein (Fig. 1).
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Expansion of the genetic code of E. coli to encode O-
methyltyrosine (Fig. 2 (1)) was reported in 2001 by Wang et
al. [32]. The tyrosyl tRNA and tyrosyl-tRNA synthetase pair
from the archaebacterium Methanocaldococcus jannaschii
(MjTyrRS/MjtRNATyr) was engineered through multiple
rounds of positive and negative selection, leading to improved
orthogonality in E. coli and the switching of substrate speci-
ficity from tyrosine to the nonnative O-methyltyrosine. To
date, the MjTyrRS/MjtRNATyr pair has been extended for the
encoding of more than 35 nonnative amino acids in E. coli
[30]. Another important group of orthogonal tRNA/synthetase
pairs are adapted from methanogenic archaebacteria in which
the amino acid pyrrolysine is naturally encoded [7]. The
pyrrolysyl tRNAs and pyrrolysyl-tRNA synthetases (PylRS/
tRNAPyl) from Methanosarcina barkeri, Methanosarcina
mazei, or Desulfitobacterium hafniense, and their engineered
mutants have been used to genetically encode at least 25
nonnative amino acids [30, 33]. Furthermore, additional pairs
from organisms including Saccharomyces cerevisiae and
Pyrococcus horikoshii have been occasionally used to encode
other nonnative amino acids in E. coli [34, 35].

In a given experiment, suppression of nonsense or four-
base codons competes with cell endogenous pathways (e.g.
translation termination or the decoding of the first three

bases of a four-base codon). Therefore, the yield of full-
length proteins containing nonnative amino acids is reduced
because of the use of unusual codons [36]. This problem is
amplified when multiple unusual codons are used in a single
gene [35]. Recent progress, however, has refined the inser-
tion of multiple nonnative amino acids. In one example, Liu
and his coworkers overexpressed the E. coli ribosomal pro-
tein L11 to reduce RF1 (release factor 1) mediated transla-
tion termination, resulting in the production of a protein
with three nonnative residues [37]. Wang et al. reported the
generation of an autonomous RF-1 deletion E. coli strain
which, in theory, can decode the UAG codon as efficiently as
decoding other natural codons [38]. In addition, MjTyrRS/
MjtRNATyr-derived tRNA/synthetase pairs and PylRS/
tRNAPyl-derived pairs were used together in the same E. coli
cell to decode two nonsense codons, so two different nonnative
amino acids were inserted into a single protein [39]. Effort has
also gone into the development of orthogonal ribosomes that
recognize special ribosomal binding sites not existing in en-
dogenous mRNAs [40]. The initial research by Chin et al. has
enhanced the ability of the orthogonal ribosomes in decoding
the nonsense UAG codon and four-base codons [41]. Research
in this direction has the potential to enable the biosynthesis of
polymers from completely artificial building blocks.

Fig. 1 Schematic diagrams
of genetic encoding of
nonnative amino acids in living
cells
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Fig. 2 Chemical structures of nonnative amino acids discussed in the text
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Similarly, orthogonal tRNA/synthetase pairs have been
developed to expand the genetic code of eukaryotic cells.
Yokoyama and his coworkers reported the genetic incorpora-
tion of 3-iodotyrosine (Fig. 2 (2)) in response to the UAG
codon in mammalian cells by rationally designing a mutant
pair based on E. coli tyrosyl-tRNA synthetase and Bacillus
stearothermophilus tyrosyl tRNA (EcTyrRS/BsttRNATyr)
[42]. To generalize the approach, Schultz and coworkers
innovated a positive and negative selection scheme in S.
cerevisiae (analogous to their selection in E. coli) [43]. The
group explored both the EcTyrRS/EctRNATyr and EcLeuRS/
EctRNALeu (E. coli leucyl tRNA/synthetases) pairs, and their
research has resulted in the addition of ~20 nonnative amino
acids to the genetic repertoire of S. cerevisiae [30]. Most pairs
evolved in S. cerevisiae can be directly adapted for expansion
of the genetic code of mammalian cells by selecting appropriate
mammalian expression promoters [44].

Orthogonal tRNA/synthetase pairs used in a given organ-
ism are usually from a different domain of life. For example,
MjTyrRS/MjtRNATyr-derived pairs are orthogonal in bacte-
ria, and EcTyrRS/EctRNATyr and EcLeuRS/EctRNALeu-de-
rived pairs are used in eukaryotic cells. PylRS/tRNAPyl-
derived pairs are unique in this sense: because of their
distinctive structural features, they can be used in both
prokaryotic and eukaryotic cells for genetic encoding of
nonnative amino acids. PylRS/tRNAPyl-derived pairs
engineered in E. coli have been directly transported into S.
cerevisiae and cultured mammalian cells [45–47].

Genetic code expansion technology has been used in a
variety of cell types and under different experimental con-
ditions. For example, E. coli cells that use 21 amino acids
have been used to express bacteriophages with surface dis-
played peptides and proteins containing nonnative amino
acids [48, 49]. This has been used to evolve nonnative
amino acid-integrated protein binders, protein folds, and
enzyme inhibitors. In addition, nonnative amino acids have
been introduced into the bacterial pathogen Mycobacterium
tuberculosis (MTB) for mechanism studies and vaccine
development [50]. Furthermore, these pairs initially devel-
oped in S. cerevisiae have been tested in the yeast Pichia
pastoris [51], in primary neurons [52], and in cells of the
insect Drosophila melanogaster [53]. Recently, Chin et al.
reported the genetic code expansion of the multicellular
organism Caenorhabditis elegans [54]. Research to extend
this into other multicellular organisms (e.g. Drosophila
melanogaster and Mus musculus) is in progress.

Bioorthogonal labeling of proteins

The native 20 amino acids only have limited biophysical
properties that can be tracked by analytical techniques. To
more efficiently probe protein structures and functions,

analytical and biophysical probes may be used to derivatize
proteins through bioorthogonal reactions. Reactions with a
native amino acid do not have much selectivity, because
such native residues may exist in many proteins. Instead,
genetically encoded nonnative amino acids may provide
characteristic functional groups not existing in native pro-
teins, and these unique functional groups may be used as
reactive handles to conjugate analytical and biophysical
probes, assuming bioorthogonal chemical reactions are
available for linking probes to the nonnative amino acid
side chains.

The keto functional group is not present in the 20 native
amino acids. It selectively and efficiently reacts with hydra-
zides and alkoxyamines. Keto-containing nonnative amino
acids, for example p-acetylphenylalanine (Fig. 2 (3)), p-
benzoylphenylalanine (Fig. 2 (4)), and 2-amino-8-oxonona-
noic acid (Fig. 2 (5)) can be introduced into proteins in E.
coli, yeast, and mammalian cells [43, 44, 55–58]. Probes
containing hydrazides or alkoxyamine functional groups can
then be used to label proteins through the keto side chain
(Fig. 3a). In one report, T4 lysozyme was mutated to insert a
site-specific p-acetylphenylalanine residue that was conju-
gated with the fluorescent Alexa 488 alkoxyamine [59].
Another fluorescent dye Alexa 594, the Förster resonance
energy transfer ( FRET) acceptor of Alexa 488, was also
used to label the cysteine residue of T4 lysozyme by use of
maleimide–thiol coupling chemistry. Unfolding of the dual
labeled protein was induced, and single-molecule FRET
between the two fluorescent dyes was monitored. Two pop-
ulations of unfolded peptides were observed, supporting a
two-state unfolding mechanism of T4 lysozyme. In another
example, the reaction was used to site-specifically conjugate
a protein with a nitroxide spin label, so that the dynamics of
the protein can be followed by electron paramagnetic reso-
nance (EPR) spectroscopy [60]. Despite the success, the
reaction between ketones and hydrazides or alkoxyamines
is relatively slow (on a timescale of hours to overnight) and
needs a weakly acidic environment (pH 4–6.5). In addition,
the keto group is abundant in other types of intracellular
molecule [61]. These factors have limited the use of this
coupling in living cells.

The alkene functionality is present in multiple nonnative
amino acids encoded in E. coli, yeast, or mammalian cells
(Fig. 2 (6–8)) [33, 62–64]. Alkenes can undergo olefin
metathesis reactions with another alkene molecule [64,
65], or Mizoroki–Heck reactions with unsaturated halides
[66, 67]. Both need appropriate organometallic catalysts,
however. Recent research has reported water-soluble cata-
lysts, but their applications to diverse proteins and in living
cells remain to be established [60–63]. In addition, Lin and
coworkers reported a UV light-induced coupling reaction
between olefins and tetrazoles (Fig. 3b) [68]. No catalyst is
needed, and it produces fluorescent pyrazoline products.
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The reaction has been tested for protein labeling in living E.
coli and mammalian cells, and has much potential for other
applications in biological systems [69]. Recently, the tetra-
zole functional group has also been genetically encoded in
E. coli [70].

Phenylselenocysteine (Fig. 2 (9)) can undergo oxidative
elimination in the presence of H2O2 to produce dehydroala-
nine, reactive to nucleophiles (e.g. thiols) in a Michael
addition reaction [71]. Obviously, this method is not appli-
cable in living cells, and cannot be used in vitro to label
cysteine and methionine-containing proteins. Similarly, 3,4-
dihydroxy-L-phenylalanine (L-DOPA, Fig. 2 (10)) can be
oxidized by NaIO4 to form a nucleophile-reactive orthoquinone
intermediate [72].

Azide or alkyne functional groups can be inserted into
proteins in E. coli, yeast, and mammalian cells (Fig. 2 (11–
17)) [33, 43, 44, 73–78]. The azide–alkyne Huisgen cyclo-
addition (“click” chemistry), in particular, has been widely
used to label proteins in vitro and in living cells (Fig. 4a)
[79]. Cu(I) catalysts are typically used, but not required:
cyclic ring-strain alkynes can promote the cycloaddition
reaction [80]. Recently, a ring-strain alkyne (Fig. 2 (18))
was genetically encoded, and the labeling was accomplished
without use of the Cu(I) catalysts that may be detrimental to
living cells (Fig. 4b) [81]. In addition, azides can undergo
Staudinger ligation with triarylphosphines under very mild
conditions (Fig. 4c) [82, 83].

In addition, 1,2-aminothiols (Fig. 2 (19, 20)) or thioesters
(Fig. 2 (21, 22)) can be incorporated into proteins [30, 84].
1,2-Aminothiols readily react with thioesters at physiologi-
cal pH (Fig. 5a) [85]. 1,2-Aminothiols also react with cya-
nobenzothiazole derivatives, which has been reported as a
very fast bioorthogonal labeling reaction (Fig. 5b) [86].

Nonnative amino acids containing boronic acid, aryl
halide or aniline functional groups (Fig. 2 (23–25)) can also
be used for bioorthogonal conjugation reactions [43, 44,
87–89]. Aryl halides can undergo multiple organometal-
catalyzed reactions [90, 91]. In particular, aryl halides and
boronic acids are reactants of the Suzuki reaction [91].
Anilines and aminophenols can be oxidatively coupled at
pH 6.5 in 2–5 min (Fig. 5c) [92].

A large set of genetically encoded reactive handles and
bioorthogonal chemical reactions are available for site-
specific protein labeling in vitro and in living cells [12,
30]. Proteins can also be immobilized or pulled down from
mixtures through these incorporated handles. For example,
N-methylglucamine resins have been used to purify boronic
acid-containing proteins, because of the reversible covalent
interaction between boronic acids and polyhydroxy func-
tional groups [87]. Proteins with azide groups can, of
course, be immobilized on to alkyne-derivatized beads or
surfaces [93].

Although analytical and biophysical probes can be conju-
gated to proteins through reactive chemical handles, in many
cases one would prefer the direct encoding of these probes.

Fluorescent probes

The native amino acid tryptophan is fluorescent under 280-
nm UV light. Expanding the genetic code of living cells has
led to the site-specific incorporation of commonly used
fluorophores. A hydroxycoumarin-derived amino acid
(Fig. 2 (26)) has been encoded in E. coli [94], and both
the dansyl and the prodan fluorophores (Fig. 2 (27, 28))
have been encoded in yeast and mammalian cells [95, 96].

Fig. 3 Protein labeling based
on (a) the conjugation between
the keto group and hydrazides
or alkoxyamines, (b) the
light-induced conjugation
between the alkene functional
group and a tetrazole
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These genetically encoded fluorescent probes provide the
ability to interrogate protein localization and dynamics with
little interference.

The simplest application is to label and locate target
proteins. In one study, the hydroxycoumarin was inserted
into the bacterial tubulin homologue FtsZ protein, and used
to track FtsZ location during cell division. It was shown that
FtsZ formed a Z-ring at the cleavage furrow [97]. The
hydroxycoumarin amino acid has also been used to label
newly synthesized peptides in complexes with ribosomes

[98]. Similarly, the prodan fluorophore has been inserted
into the histone protein in CHO cells, and used to track cell
division [30].

A unique application of these fluorescent amino acids is to
examine local structural changes in proteins, because their
fluorescence is often sensitive to subtle environmental
changes. For example, when the prodan fluorophore was
incorporated into the binding cleft of the E. coli glutamine-
binding protein, a dramatic fluorescence emission shift from
480 nm to 430 nm was observed for the protein upon

Fig. 5 Protein labeling based
on (a) the native chemical
ligation between 1,2-
aminothiols and thioesters, (b)
the cyanobenzothiazole
condensation of 1,2-
aminothiols, (c) the oxidative
coupling of anilines and
aminophenols

Fig. 4 Protein labeling based
on (a) the “click” chemistry
between the azide functional
group and alkynes in the
presence of Cu(I) catalysts, (b)
the copper-free “click”
chemistry between a genetically
encoded ring-strain alkyne and
azides, (c) the Staudinger
ligation between the azide
functional group and aryl
phosphines
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glutamine binding, a process that induces protein conforma-
tion changes [96]. Recently, the hydroxycoumarin amino acid
was incorporated into the phosphotyrosine-binding pocket of
the protein STAT3. Phosphorylation of STAT3 by upstream
enzymes can be monitored, because when the phosphorylated
peptide binds to the binding pocket, it affects the fluorescence
of hydroxycoumarin in the pocket [99]. In addition, the dansyl
fluorophore has been incorporated into the voltage-sensitive
domain of Ciona intestinalis voltage sensitive phosphatase to
monitor membrane depolarization of differentiated neurons
from HCN-A94 neural stem cells [52].

Furthermore, genetically encoded p-nitrophenylalanine
(Fig. 2 (29)) and 3-nitrotyrosine (Fig. 2 (30)) in E. coli can
be used as fluorescent quenchers for the natural amino acid
tryptophan [100, 101]. The quenching process is highly
distance-dependent, so it can be used to probe distances
related to protein folding and other structural dynamics
[102].

Vibrational probes

The infrared (IR) absorption of a protein provides a wealth
of information about its structure and dynamics [103]. The
bond stretching, bending, and other vibration modes in a
protein can be interpreted from its absorption of IR light.
Nonnative amino acids with strong characteristic vibration
modes have been used to site-specifically label proteins; IR
spectroscopy can then be used to probe subtle changes
related to that residue.

The C≡N bond is associated with a large dipole moment,
so it generates an intense sharp absorption peak at ~2200–
2300 cm−1. Importantly, this peak is separated from those
resulting from vibrations that occur naturally in proteins.
The C≡N vibration is very sensitive to its local environment
and routinely used as a vibrational probe in IR spectrometry.
p-Cyanophenylalanine (Fig. 2 (31)) was incorporated into
myoglobin to probe the binding of ligands (e.g. CN−, NO,
O2, and CO) to the myoglobin iron center [104]. It is worth
noting that p-cyanophenylalanine is also fluorescent under
UV excitation, and its fluorescence is sensitive to its envi-
ronment [105]. So both fluorescence and IR spectroscopy
can be used to interpret the dynamics of p-cyanophenylala-
nine-containing proteins.

Similarly, the anti-symmetric stretch of the azide func-
tional group absorbs at ~2100 cm−1, which is also in the
clear spectral window of natural proteins. p-Azidophenyla-
lanine (Fig. 2 (11)) has been incorporated into the G-protein
coupled receptor rhodopsin to monitor its structural changes
induced by light [106, 107]. In other examples, the nitro
symmetric stretching of p-nitrophenylalanine (Fig. 2 (29))
and 3-nitrotyrosine (Fig. 2 (30)) has been used in IR and
Raman spectrometry [108–110].

Residue labeling for nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a spectroscopic tech-
nique which makes use of the magnetic properties of atom
nuclei [111]. The resonance of magnetic nuclei is sensitive
to the electromagnetic environment. The magnetic nuclei
commonly used for protein analysis are 1H, 13C, and 15N
[111]. Traditional isotope enrichment methods often global-
ly introduce magnetic nuclei into proteins. The assignment
of NMR peaks can be challenging for large proteins.

Site-specific labeling of proteins can be accomplished by
using genetic code expansion technology [112]. For exam-
ple, 13C/15N-labeled p-methoxyphenylalanine (Fig. 2 (32)),
p-trifluoromethoxyphenylalanine (Fig. 2 (33)), and p-tri-
fluoromethylphenylalanine (Fig. 2 (34)) have been incorpo-
rated into proteins by using the corresponding engineered
aminoacyl tRNA/synthetase pairs [32, 113, 114]. This strat-
egy can, in theory, be used to isotopically label nonnative
amino acid residues for which orthogonal tRNA/synthetase
pairs are available.

Fluorine (19F) labeling is attractive to NMR researchers.
19F does not exist in any natural amino acid, and it has 100%
natural abundance and high NMR sensitivity [115]. The
fluorine atom is a good steric mimic of hydrogen. As noted
above, fluorine can be introduced into nonnative amino acids
that are structurally distinct from natural amino acids. Howev-
er, when a single fluorine atom is used to replace one hydrogen
atom in a natural amino acid, cell endogenous machinery may
still use the resulting amino acid. This leads to cell toxicity and
the global replacement of the native amino acid residues. One
strategy to circumvent this is to use special host strains. For
example, p-fluorophenylalanine (Fig. 2 (35)) was site-
specifically incorporated into dihydrofolate reductase (DHFR)
using a p-fluorophenylalanine-resistant phenylalanine-
auxotrophic E. coli strain [116]. The strain harbors a
phenylalanyl-tRNA synthetase that can exclude p-fluorophe-
nylalanine, and an exogenously-introduced S. cerevisiae phe-
nylalanyl tRNA/synthetase pair recognizing the UAG codon.
The cells were cultured in media with a large excess of
p-fluorophenylalanine and limited phenylalanine. The cell-
endogenous phenylalanyl tRNA/synthetase pair is specific to
phenylalanine whereas the S. cerevisiae phenylalanyl tRNA/
synthetase pair can incorporate p-fluorophenylalanine into
DHFR in response to the UAG codon. Another strategy uses
nonnative amino acids that are convertible by mild chemical
reactions [47, 64]. For example, o-nitrobenzyl-caged fluorotyr-
osine (Fig. 2 (36)) has been genetically encoded in E. coli
[117]. Upon UV illumination, it can be converted (Fig. 6a).
Photocaged lysine, methyllysine, serine, cysteine, and tyrosine
have all been genetically encoded [30]. Therefore, this strategy
can be used to generate isotope-labeled residues of many
native amino acids. 19F, 13C, and 15N can all be used in this
type of experiments.
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Recently, a polyspecific tRNA/synthetase pair that rec-
ognizes 3-fluorotyrosine and multiple di and trifluorotyro-
sines has been reported [118]. It is likely that E. coli
endogenous machinery was able to exclude di and trifluor-
otyrosines. However, the specificity for 3-fluorotyrosine
remains to be confirmed. Detailed characterization of pro-
teins containing natural tyrosine residues would be needed,
because cell endogenous tyrosyl tRNA/synthetase pairs may
possibly use 3-fluorotyrosine to replace tyrosine residues.

Further development in this direction may enable NMR
analysis of labeled proteins in living cells [112]. Another
trend is to develop genetically encoded spin labels which
can be used in NMR paramagnetic relaxation enhancement
[112]. The interaction between a magnetic nucleus and the
unpaired electron of a spin label can provide long-range
distance information. Again, the direct encoding of spin
labels has been unsuccessful, but reactive chemical handles
of nonnative amino acids have been used to conjugate spin
labels to proteins [60].

Applications in X-ray crystallography

Introduction of fluorescent, vibrational, and NMR probes at
specific sites within proteins is an attractive solution for
identifying local dynamic changes in proteins. In contrast,
X-ray crystallography provides still images of structural
details of proteins. One challenge in X-ray crystallography
is to reconstruct atomic structures of proteins from diffrac-
tion patterns, and phase information is needed in the pro-
cess. Single-wavelength anomalous dispersion (SAD) is an
often used method [119].

The heavy atom iodine, as p-iodophenylalanine (Fig. 2
(24)) or 3-iodotyrosine (Fig. 2 (2)), can be genetically in-
corporated into proteins in living E. coli, yeast, and mam-
malian cells [42, 44, 88]. As demonstrated, the strong
scattering signals from iodine have been used to solve the
structures of the bacteriophage T4 lysozyme and the ribo-
somal protein N-acetyltransferase [88, 120]. This method

has the advantages that less structural distortion is observed
and it requires considerably fewer data than traditional
phasing methods [88, 120].

Metal-chelating nonnative amino acids, (8-hydroxyquino-
lin-3-yl)alanine (Fig. 2 (37)) and (2,2′-bipyridin-5-yl)alanine
(Fig. 2 (38)), can be readily incorporated into proteins in E.
coli [121, 122]. Heavy metal cations can be loaded, and their
scattering may also be used to solve the phase. (8-Hydrox-
yquinolin-3-yl)alanine is preferred for this application because
it has less steric hindrance. The structure of TM0665 (Ther-
motoga maritima O-acetylserine sulfhydrylase) was solved by
loading Zn2+ on to a site-specific (8-hydroxyquinolin-3-yl)
alanine [121].

Applications in mass spectrometry

The main application of nonnative amino acids in mass
spectrometry (MS) is to stabilize protein–protein or pro-
tein–ligand interactions in pull-down assays. A “bait” pro-
tein is often immobilized to purify the “prey” (a protein or
other type of molecule) that can be identified by one of
many MS techniques. When the interaction is weak or
transient, crosslinking reagents will be needed to stabilize
the interaction. Currently, photocrosslinking nonnative ami-
no acids (Fig. 2 (4, 11, 13, 39)) containing benzophenone,
aryl azide and diazirine are available for site-specific protein
labeling in E. coli, yeast, and mammalian cells [33, 43, 44,
56, 73–75]. Upon UV illumination, side chains of these
amino acid form reactive species that can crosslink sur-
rounding interacting molecules (Fig. 6b). Light can be de-
livered to living cells, resulting in the stabilization of
biological interactions in situ.

In one study, p-benzoylphenylalanine (Fig. 2 (4)) was
incorporated into an endoplasmic reticulum (ER)-associated
protein degradation substrate, which was able to crosslink
the ubiquitin ligase Hrd1p [123]. Multiple sites in the sub-
strate protein were tested, and crosslinks were observed
between the misfolded segment of the substrate and Hrd1p

Fig. 6 Schematic diagrams for
(a) the site-specific incorpora-
tion of fluorotyrosine into
proteins based on a photocaging
reaction, (b) the site-specific
incorporation of photocros-
slinking diazirine and the
generation of reactive
crosslinking species
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on the luminal side of the ER membrane. The authors
proposed a model for retrotranslocation of the misfolded
luminal ER protein by Hrd1p [123].

In another report, p-azidophenylalanine (Fig. 2 (11)) was
incorporated into different positions of the corticotropin
releasing factor receptor type 1 (CRF-R1) [124]. The G-
protein coupled receptor CRF-R1 binds peptide hormones to
mediate various downstream responses. The cross-linking
patterns with multiple peptide ligands were compared, sug-
gesting that these ligands were not tightly bound and differ-
ent ligands interacted with different regions of the receptor
in native complexes.

The aliphatic photocrosslinker 3′-azibutyl-N-carbamoyl-
lysine (Fig. 2 (39)) has been genetically introduced into the
active site of the kinase CDK5 (cyclin-dependent kinase 5)
[125]. The downstream kinase PAK1 was identified by
crosslinking. A similar diazirine amino acid was used to
profile the substrates of the acid-protection chaperone HdeA
in E. coli periplasm [126]. The flexibility of the long ali-
phatic chain was important for this particular experiment,
because p-benzoylphenylalanine (Fig. 2 (4)) did not result in
satisfactory crosslinking.

Currently, there are multiple choices of nonnative amino
acids for photocrosslinking experiments. The incorporation
efficiencies of these amino acids are comparable in E. coli.
We observed that 3′-azibutyl-N-carbamoyl-lysine (Fig. 2
(39)) could be more efficiently incorporated in mammalian
cells by use of an engineered tRNA/synthetase pair
[125]. In terms of photocrosslinking, p-benzoylphenyla-
lanine (Fig. 2 (4)) can be repeatedly excited by 360-nm
light, so crosslinking could be increased by increasing
illumination [127]. p-Azidophenylalanine (Fig. 2 (11)) is
structurally similar to tyrosine and phenylalanine, but under
the action of light it is known to form a ring-expanded
intermediate that can nonspecifically react with nucleo-
philes [128]. In addition, some p-azidophenylalanine
residues in proteins have been reported to be unstable (possi-
bly reduced by cell endogenous reductants or enzymes) [44].
When deciding to use a particular photocrosslinking amino
acid, one should take the aforementioned aspects into
consideration.

Other applications

Nonnative amino acids have been broadly used to probe the
roles of individual residues in proteins. For example, the
Stubbe group extensively used tyrosine analogous (3-
hydroxytyrosine (Fig. 2 (10)), 3-nitrotyrosine (Fig. 2 (30)),
3-aminotyrosine (Fig. 2 (40)) and multiple fluorotyrosines
with different redox potentials or pH sensitivity, to elucidate
the mechanism of in-protein long-range radical transfer
[118, 129, 130]. These residues were used to replace

individual tyrosines in proteins, and radical formation and
transfer was monitored by use of EPR and other analytical
techniques. Comparison of differently modified proteins
provided clues about the roles of individual residues.

Nonnative amino acids containing enriched functional
groups may be used to generate biosensors. Recently, 3-
hydroxytyrosine was inserted into the green fluorescent
protein (GFP) to generate a Cu2+-specific biosensor, be-
cause of the metal-chelating ability of 3-hydroxytyrosine
[131]. Considering the diversity of encoded nonnative ami-
no acids, further investigation of this technique would gen-
erate a large group of useful biosensors for a variety of
analytes.

Conclusions and perspectives

The fruitful work of expanding the genetic code of living
cells and organisms has provided a large family of nonnative
amino acids with different chemical, biochemical, and bio-
physical properties. Application of this technology has
advanced a significant field of science.

In general, the incorporation efficiency of nonnative ami-
no acids in yeast and mammalian cells is lower than in E.
coli. Progress has been made in enhancing tRNAs and
synthetases, to identify more strongly expressing promoters,
to increase cell uptake of nonnative amino acids, and to
reduce nonsense–mediated mRNA decay in cells [30, 31].
Radical efforts are continuing to encode additional nonna-
tive amino acids, to develop novel orthogonal tRNA/syn-
thetase pairs, and to increase efficiency and adapt existing
systems in other unicellular and multicellular systems.

Nonnative amino acids have been coupled with analytical
chemistry for investigation of many biological problems.
Such coupling has driven (and will continue to drive) prog-
ress in many fields of research. Further investigation of
genetic code-expansion technology will furnish probes with
new or improved properties (e.g. genetically encoded spin
labels, red-shifted fluorophores, and novel chemical reactive
handles with better reactivity and biocompatibility). The
utility of these nonnative amino acids has, however, mostly
been demonstrated in proof-of-principle experiments, so
adoption of the technology to address rather specific questions
is expected in the near future.

The technology of genetic code expansion is very versa-
tile and still rapidly evolving. With the set of tools currently
available, researchers with different scientific background
are able to investigate problems that were not previously
accessible.
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