Skip to main content
Log in

Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A mixed anionic–cationic surfactant cloud point extraction (CPE) has been developed using sodium dodecyl sulfate (SDS) and tetrabutylammonium bromide (TBABr) for the extraction and preconcentration of organophosphorus pesticides (OPPs) at ambient temperature before analysis by high-performance liquid chromatography. The studied OPPs were azinphos-methyl, parathion-methyl, fenitrothion, diazinon, chlorpyrifos, and prothiophos. The optimum conditions of the mixed anionic–cationic CPE were 50 mmol L−1 SDS, 100 mmol L−1 TBABr, and 10% (w/v) NaCl. The extracted OPPs were successfully separated within 11 min using the conditions of a Waters Symmetry C8 column, a flow rate of 0.8 mL min−1, a gradient elution of methanol and water, and detection at 210 nm. Linearity was found over the range 0.05–5 μg mL−1, with the correlation coefficients higher than 0.996. The enrichment factor of the target analytes was in the range 6–11, which corresponds to their limits of detection from 1 to 30 ng mL−1. High precisions (intra-day and inter-day) were obtained with relative standard deviation <1.5% (t R) and 10% (peak area). Accuracies (% recovery) of the different spiked OPP concentrations were 82.7–109.1% (water samples) and 80.3–113.3% (fruit juice samples). No contamination by the OPPs was observed in any studied samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. García de Llasera MP, Reyes-Reyes ML (2009) A validated matrix solid-phase dispersion method for the extraction of organophosphorus pesticides from bovine samples. Food Chem 114:1510–1516

    Article  Google Scholar 

  2. Fu L, Liu X, Hu J, Zhao X, Wang H, Wang X (2009) Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal Chim Acta 632:289–295

    Article  CAS  Google Scholar 

  3. Jin S, Xu Z, Chen J, Liang X, Wu Y, Qian X (2004) Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. Anal Chim Acta 523:117–123

    Article  CAS  Google Scholar 

  4. Khalili-Zanjani MR, Yamini Y, Yazdanfar N, Shariati S (2008) Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction–gas chromatography–flame photometric detection. Anal Chim Acta 606:202–208

    Article  CAS  Google Scholar 

  5. Xiao Q, Hu B, Yu Ch, Xia L, Jiang Z (2006) Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography–flame photometric detection. Talanta 69:848–855

    Article  CAS  Google Scholar 

  6. Salm P, Taylor PJ, Roberts D, Silva J (2009) Liquid chromatography–tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. J Chromatogr B 877:568–574

    Article  CAS  Google Scholar 

  7. Mol HGJ, Dam RCJ, Steijger OM (2003) Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry: selection of extraction solvent. J Chromatogr A 1015:119–127

    Article  CAS  Google Scholar 

  8. Buonasera K, D’Orazio G, Fanali S, Dugo P, Mondello L (2009) Separation of organophosphorus pesticides by using nano-liquid chromatography. J Chromatogr A 1216:3970–3976

    Article  CAS  Google Scholar 

  9. Cháfer-Pericás C, Herráez-Hernández R, Campíns-Falcó P (2007) In-tube solid-phase microextraction–capillary liquid chromatography as a solution for the screening analysis of organophosphorus pesticides in untreated environmental water samples. J Chromatogr A 1141:10–21

    Article  Google Scholar 

  10. Guan W, Wang Y, Xu F, Guan Y (2008) Poly(phthalazine ether sulfone ketone) as novel stationary phase for stir bar sorptive extraction of organochlorine compounds and organophosphorus pesticides. J Chromatogr A 1177:28–35

    Article  CAS  Google Scholar 

  11. Liu W, Hu Y, Zhao J, Xu Y, Guan Y (2005) Determination of organophosphorus pesticides in cucumber and potato by stir bar sorptive extraction. J Chromatogr A 1095:1–7

    Article  CAS  Google Scholar 

  12. Fuentes E, Báez ME, Labra R (2007) Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil. J Chromatogr A 1169:40–46

    Article  CAS  Google Scholar 

  13. Fuentes E, Báez ME, Quiñones A (2008) Suitability of microwave-assisted extraction coupled with solid-phase extraction for organophosphorus pesticide determination in olive oil. J Chromatogr A 1207:38–45

    Article  CAS  Google Scholar 

  14. Moinfar S, Hosseini M-R M (2009) Development of dispersive liquid–liquid microextraction method for the analysis of organophosphorus pesticides in tea. J Hazard Mater 169:907–911

    Article  CAS  Google Scholar 

  15. Zhao E, Zhao W, Han L, Jiang S, Zhou Z (2007) Application of dispersive liquid–liquid microextraction for the analysis of organophosphorus pesticides in watermelon and cucumber. J Chromatogr A 1175:137–140

    Article  CAS  Google Scholar 

  16. Santalad A, Srijaranai S, Burakham R, Glennon JD, Deming RL (2009) Cloud-point extraction and reversed-phase high performance liquid chromatography for the determination of carbamate insecticide residues in fruits. Anal Bioanal Chem 394:1307–1317

    Article  CAS  Google Scholar 

  17. Jia G, Lv C, Zhu W, Qiu J, Wang X, Zhou Z (2008) Applicability of cloud point extraction coupled with microwave-assisted back-extraction to the determination of organophosphorous pesticides in human urine by gas chromatography with flame photometry detection. J Hazard Mater 159:300–305

    Article  CAS  Google Scholar 

  18. Liu X, Chen X-H, Zhang Y-Y, Liu W-T, Bi K-S (2007) Determination of arbidol in rat plasma by HPLC–UV using cloud-point extraction. J Chromatogr B 856:273–277

    Article  CAS  Google Scholar 

  19. Wang L, Cai Y-Q, He B, Yuan C-G, Shen D-Z, Shao J, Jiang G-B (2006) Determination of estrogens in water by HPLC–UV using cloud point extraction. Talanta 70:47–51

    Article  CAS  Google Scholar 

  20. Santalad A, Srijaranai S, Burakham R, Sakai T, Deming RL (2008) Acid-induced cloud-point extraction coupled to spectrophotometry for the determination of carbaryl residues in waters and vegetables. Microchem J 90:50–55

    Article  CAS  Google Scholar 

  21. Goryacheva IY, Loginov AS, Lavrova TN, Popov MA (2007) Extraction preconcentration with anionic surfactants in acidic solutions. J Anal Chem 62:411–415

    Article  CAS  Google Scholar 

  22. Goryacheva IY, Shtykov SN, Loginov AS, Panteleeva IV (2005) Preconcentration and fluorimetric determination of polycyclic aromatic hydrocarbons based on the acid-induced cloud-point extraction with sodium dodecyl sulfate. Anal Bioanal Chem 382:1413–1418

    Article  CAS  Google Scholar 

  23. Pourreza N, Zareian M (2009) Determination of Orange II in food samples after cloud point extraction using mixed micelles. J Hazard Mater 165:1124–1127

    Article  CAS  Google Scholar 

  24. Pourreza N, Rastegarzadeh S, Larki A (2011) Determination of Allura red in food samples after cloud point extraction using mixed micelles. Food Chem 126:1465–1469

    Article  CAS  Google Scholar 

  25. Zarei AR (2009) Spectrophotometric determination of trace amounts of furfural in water samples after mixed micelle-mediated extraction. Acta Chim Slov 56:322–328

    CAS  Google Scholar 

  26. Wu H, Zhao G-Y, Du L-M (2010) Determination of ofloxacin and gatifloxacin by mixed micelle-mediated cloud point extraction–fluorimetry combined methodology. Spectrochim Acta Part A 75:1624–1628

    Article  Google Scholar 

  27. Weschayanwiwat P, Kunanupap O, Scamehorn JF (2008) Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures. Chemosphere 72:1043–1048

    Article  CAS  Google Scholar 

  28. Hao L-S, Nan Y-Q (2008) Salt-induced aqueous two-phase systems of oppositely charged surfactants with excess anionic surfactant. Colloids Surf A, Physicochem Eng Aspects 325:186–193

    Article  CAS  Google Scholar 

  29. Jiang R, Huang Y-X, Zhao J-X, Huang C-C (2009) Aqueous two-phase system of an anionic gemini surfactant and a cationic conventional surfactant mixture. Fluid Phase Equilib 277:114–120

    Article  CAS  Google Scholar 

  30. Zhao J, Liu J, Jiang R (2009) Interaction between anionic and cationic gemini surfactants at air/water interface and in aqueous bulk solution. Colloids Surf A, Physicochem Eng Aspects 350:141–146

    Article  CAS  Google Scholar 

  31. You Y-L, Hao L-S, Nan Y-Q (2009) Phase behavior and viscous properties of cetyltrimethylammonium bromide and sodium dodecyl sulfonate aqueous mixtures. Colloids Surf A, Physicochem Eng Aspects 335:154–167

    Article  CAS  Google Scholar 

  32. Nan Y-Q, Liu H-L, Hu Y (2006) Interfacial tension in phase-separated aqueous cationic/anionic surfactant mixtures. J Colloid Interface Sci 293:464–474

    Article  CAS  Google Scholar 

  33. Mata J, Varade D, Ghosh G, Bahadur P (2004) Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate. Colloids Surf A, Physicochem Eng Aspects 245:69–73

    Article  CAS  Google Scholar 

  34. Xiao J-X, Sivars U, Tjerneld F (2000) Phase behavior and protein partitioning in aqueous two-phase systems of cationic–anionic surfactant mixtures. J Chromatogr B 743:327–338

    Article  CAS  Google Scholar 

  35. Tong A, Wu Y, Tan S, Li L, Akama Y, Tanaka S (1998) Aqueous two-phase system of cationic and anionic surfactant mixture and its application to the extraction of porphyrins and metalloporphyrins. Anal Chim Acta 369:11–16

    Article  CAS  Google Scholar 

  36. Tong A-J, Dong J-J, Li L-D (1999) Aqueous two-phase extraction system of sodium perfluorooctanoate and dodecyltriethylammonium bromide mixture and its application to porphyrins and dyes. Anal Chim Acta 390:125–131

    Article  CAS  Google Scholar 

  37. Romero-González R, Frenich AG, Vidal JLM (2008) Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry. Talanta 76:211–225

    Article  Google Scholar 

  38. Pei Y, Wang J, Wu K, Xuan X, Lu X (2009) Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Technol 64:288–295

    Article  CAS  Google Scholar 

  39. Li CX, Han J, Wang Y, Yan Y-S, Xu X-H, Pan J-M (2009) Extraction and mechanism investigation of trace roxithromycin in real water samples by use of ionic liquid–salt aqueous two-phase system. Anal Chim Acta 653:178–183

    Article  CAS  Google Scholar 

  40. Hao L, Nan Y, Liu H, Hu Y (2006) Salt effects on aqueous cationic/anionic surfactant two-phase regions. J Dispersion Sci Tech 27:271–276

    Article  CAS  Google Scholar 

  41. Wang Z (2009) Predicting organic compound recovery efficiency of cloud point extraction with its quantitative structure–solubilization relationship. Colloid Surf A, Physicochem Eng Aspects 349:214–217

    Article  CAS  Google Scholar 

  42. Mitra D, Chakraborty I, Bhattacharya SC, Moulik SP (2007) Interfacial and solution properties of tetraalkylammonium bromides and their soldium dodecyl sulfate interacted products: a detailed physicochemical study. Langmuir 23:3049–3061

    Article  CAS  Google Scholar 

  43. Liu W, Zhao W, Chen J, Yang M (2007) A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder. Anal Chim Acta 605:41–45

    Article  CAS  Google Scholar 

  44. EU pesticide database (2005) Pesticide EU-MRLs Database Regulation (EC) No 396/2005. http://www.ec.europa.eu/food/plant/protection/pesticides/index_en.htm

Download references

Acknowledgments

The authors wish to thank the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, and the Ministry of Education for financial support. The valuable suggestions from Prof. Richard L. Deming (California State University of Fullerton, USA) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supalax Srijaranai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seebunrueng, K., Santaladchaiyakit, Y., Soisungnoen, P. et al. Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples. Anal Bioanal Chem 401, 1703–1712 (2011). https://doi.org/10.1007/s00216-011-5214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5214-x

Keywords

Navigation