Skip to main content

Advertisement

Log in

Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Separation of inspiratory, mixed expired and alveolar air is indispensable for reliable analysis of VOC breath biomarkers. Time resolution of direct mass spectrometers often is not sufficient to reliably resolve the phases of a breathing cycle. To realise fast on-line breath monitoring by means of direct MS utilising low-fragmentation soft ionisation, a data processing algorithm was developed to identify inspiratory and alveolar phases from MS data without any additional equipment. To test the algorithm selected breath biomarkers (acetone, isoprene, acetaldehyde and hexanal) were determined by means of quadrupole proton transfer reaction mass spectrometry (PTR-MS) in seven healthy volunteers during exercise on a stationary bicycle. The results were compared to an off-line reference method consisting of controlled alveolar breath sampling in Tedlar® bags, preconcentration by solid-phase micro extraction (SPME), separation and identification by GC-MS. Based on the data processing method, quantitative attribution of biomarkers to inspiratory, alveolar and mixed expiratory phases was possible at any time during the experiment, even under respiratory rates up to 60/min. Alveolar concentrations of the breath markers, measured by PTR-MS ranged from 130 to 2,600 ppb (acetone), 10 to 540 ppb (isoprene), 2 to 31 ppb (acetaldehyde), whereas the concentrations of hexanal were always below the limit of detection (LOD) of 3 ppb. There was good correlation between on-line PTR-MS and SPME-GC-MS measurements during phases with stable physiological parameters but results diverged during rapid changes of heart rate and minute ventilation. This clearly demonstrates the benefits of breath-resolved MS for fast on-line monitoring of exhaled VOCs.

Experimental setup showing bicycle ergometer and analytical pathways: Right side PTR-MS: identification of respiratory phases by means of the new algorithm. Left side: confirmation of PTR-MS data for exhaled isoprene by means of GC-MS analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schubert JK, Miekisch W, Geiger K, Noedge-Schomburg GFE (2004) Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn 4(5):619–629

    Article  CAS  Google Scholar 

  2. Schubert JK, Miekisch W, Birken T, Geiger K, Noedge-Schomburg GFE (2005) Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 10(2–3):138–152

    Article  CAS  Google Scholar 

  3. Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta 347(1–2):25–39

    Article  CAS  Google Scholar 

  4. Schubert JK, Spittler KH, Braun G, Geiger K, Guttmann J (2001) CO2-controlled sampling of alveolar gas in mechanically ventilated patients. J Appl Physiol 90(2):486–492

    CAS  Google Scholar 

  5. Basanta M, Koimtzis T, Singh D, Wilson I, Thomas CLP (2007) An adaptive breath sampler for use with human subjects with an impaired respiratory function. Analyst 132(2):153–163

    Article  CAS  Google Scholar 

  6. Larstad MAE, Toren K, Bake B, Olin AC (2007) Determination of ethane, pentane and isoprene in exhaled air—effects of breath-holding, flow rate and purified air. Acta Physiol 189(1):87–98

    Article  CAS  Google Scholar 

  7. Lindstrom AB, Pleil JD (1996) Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling. J Air Waste Manag Assoc 46(7):676–682

    CAS  Google Scholar 

  8. Ma V, Lord H, Morley M, Pawliszyn J (2010) Application of membrane extraction with sorbent interface for breath analysis. Method mol biol 610:451–468

    Article  CAS  Google Scholar 

  9. Muehlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R (2005) Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath. Anal Chem 77(22):7408–7414

    Article  CAS  Google Scholar 

  10. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at PPTV levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173(3):191–241

    Article  CAS  Google Scholar 

  11. Smith D, Španěl P (2007) The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst 132(5):390–396

    Article  CAS  Google Scholar 

  12. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level. Int J Mass Spectrom Ion Process 149–150:609–619

    Article  Google Scholar 

  13. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26(2):223–257

    Article  Google Scholar 

  14. Deneris ES, Stein RA, Mead JF (1984) In vitro biosynthesis of isoprene from mevalonate utilizing a rat liver cytosolic fraction. Biochem Biophys Res Commun 123(2):691–696

    Article  CAS  Google Scholar 

  15. Deneris ES, Stein RA, Mead JF (1985) Acid-catalyzed formation of isoprene from a mevalonate-derived product using a rat liver cytosolic fraction. J Biol Chem 260(3):1382–1385

    CAS  Google Scholar 

  16. Deng C, Li N, Wang X, Zhang X, Zeng J (2005) Rapid determination of acetone in human blood by derivatization with pentafluorobenzyl hydroxylamine followed by headspace liquid-phase microextraction and chromatography/mass spectrometry. Rapid Commun Mass Spectrom 19(5):647–653

    Article  CAS  Google Scholar 

  17. Orhan H, van Holland B, Krab B, Moeken J, Vermeulen NPE, Hollander P, Meerman JHN (2004) Evaluation of a multi-parameter biomarker set for oxidative damage in man: Increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radic Res 38(12):1269–1279

    Article  CAS  Google Scholar 

  18. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109(3):861–896

    Article  CAS  Google Scholar 

  19. Kischkel S, Miekisch W, Sawacki A, Straker EM, Trefz P, Amann A, Schubert JK (2010) Breath biomarkers for lung cancer detection and assessment of smoking related effects—confounding variables, influence of normalization and statistical algorithms. Clin Chim Acta 411(21–22):1637–1644

    Article  CAS  Google Scholar 

  20. Amann A, Miekisch W, Pleil J, Risby T, Schubert W (2010) Methodological issues of sample collection and analysis of exhaled breath. In: Horvath I, de Jongste J (eds) European respiratory society monograph 49. pp 96–114

  21. Birken T, Schubert J, Miekisch W, Noedge-Schomburg G (2006) A novel visually CO2 controlled alveolar breath sampling technique. Technol Health Care 14(6):499–506

    Google Scholar 

  22. Miekisch W, Kischkel S, Sawacki A, Liebau T, Mieth M, Schubert JK (2008) Impact of sampling procedures on the results of breath analysis. J Breath Res 2(2):026007

    Article  Google Scholar 

  23. King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A (2009) Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res 3(2):027006

    Article  CAS  Google Scholar 

  24. Miekisch W, Hengstenberg A, Kischkel S, Beckmann U, Mieth M, Schubert JK (2010) Construction and evaluation of a versatile CO2 controlled breath collection device. Sens J IEEE 10(1):211–215

    Article  CAS  Google Scholar 

  25. Herbig J, Titzmann T, Beauchamp J, Kohl I, Hansel A (2008) Buffered end-tidal (BET) sampling-a novel method for real-time breath-gas analysis. J Breath Res 2(3):037008

    Article  Google Scholar 

  26. Herbig J, Müller M, Schallhart S, Titzmann T, Graus M, Hansel A (2009) On-line breath analysis with PTR-TOF. J Breath Res 3(2):027004

    Article  Google Scholar 

  27. Blake RS, Wyche KP, Ellis AM, Monks PS (2006) Chemical ionization reaction time-of-flight mass spectrometry: Multi-reagent analysis for determination of trace gas composition. Int J Mass Spectrom 254(1–2):85–93

    CAS  Google Scholar 

  28. Senthilmohan ST, Milligan DB, McEwan MJ, Freeman CG, Wilson PF (2000) Quantitative analysis of trace gases of breath during exercise using the new SIFT-MS technique. Redox Report 5(2–3):151–153

    Article  CAS  Google Scholar 

  29. Karl T, Prazeller P, Mayr D, Jordan A, Rieder J, Fall R, Lindinger W (2001) Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J Appl Physiol 91(2):762–770

    CAS  Google Scholar 

  30. Filser J, Csanady G, Denk B, Hartmann M, Kauffmann A, Kassler W, Kreuzer P, Puetz C, Shen J, Stei P (1996) Toxicokinetics of isoprene in rodents and humans. Toxicology 113(1–3):278–287

    Article  CAS  Google Scholar 

  31. King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A, Teschl G, Teschl S, Hinterhuber H, Amann A (2010) Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol 267(4):626–637

    Article  CAS  Google Scholar 

  32. Deng C, Zhang J, Yu X, Zhang W, Zhang X (2004) Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B 810(2):269–275

    CAS  Google Scholar 

  33. Beauchamp J, Herbig J, Gutmann R, Hansel A (2008) On the use of Tedlar® bags for breath-gas sampling and analysis. J Breath Res 2(4):046001

    Article  Google Scholar 

  34. Pet'ka J, Etievant P, Callement G (2000) Suitability of different plastic materials for head or nose spaces short term storage. Analusis 28(4):330–335

    Article  Google Scholar 

  35. McGarvey LJ, Shorten CV (2000) The effects of adsorption on the reusability of Tedlar; air sampling bags. Am Ind Hyg Assoc J 61(3):375–380

    CAS  Google Scholar 

  36. Steeghs MML, Cristescu SM, Harren FJM (2007) The suitability of Tedlar bags for breath sampling in medical diagnostic research. Physiol Meas 28(1):73–84

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the group of Anton Amman (Austrian Academy of Science) for providing the sampling box for the controlled sampling of alveolar breath into Tedlar® bags.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Miekisch.

Additional information

Published in the special issue Biomarkers with Guest Editors Boguslaw Buszewski and Jochen Schubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwoebel, H., Schubert, R., Sklorz, M. et al. Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Anal Bioanal Chem 401, 2079–2091 (2011). https://doi.org/10.1007/s00216-011-5173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5173-2

Keywords

Navigation