Skip to main content
Log in

Using laser ablation/inductively coupled plasma mass spectrometry to bioimage multiple elements in mouse tumors after hyperthermia

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we employed laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the spatial distribution of Gd-doped iron oxide nanoparticles (IONPs) in one tumor slice that had been subjected to magnetic fluid hyperthermia (MFH). The mapping results revealed the high resolution of the elemental analysis, with the distribution of Gd atoms highly correlated with that of the Fe atoms. The spatial distributions of C, P, S, and Zn atoms revealed that the effect of MFH treatment was significantly dependent on the diffusion of the magnetic fluid in the tissue. An observed enrichment of Cu atoms after MFH treatment was probably due to inflammation in the tumor. The abnormal distribution of Ni atoms suggests a probable biochemical reaction in the tumor. Therefore, this LA-ICP-MS mapping technique can provide novel information regarding the spatial distribution of elements in tumors after cancer therapy.

Mapping and ion intensities of a 56Fe and b 158Gd atoms. The red line indicates the path taken during the time-resolved analyses of Fe and Gd atoms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrot JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  CAS  Google Scholar 

  2. Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  CAS  Google Scholar 

  3. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1662

    Article  Google Scholar 

  4. Baker L, Zeng Q, Li W, Sullivan CR (2006) Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys 99:08H106

    Article  Google Scholar 

  5. Fortin J-P, Wilhelm C, Servails J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    Article  CAS  Google Scholar 

  6. Zhao D-L, Zeng XW, Xia QS, Tang JT (2009) Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia. J Alloys Compd 469:215–218

    Article  CAS  Google Scholar 

  7. Kim DH, Lee SH, Im KH, Kim KN, Kim KM, Shim IB, Lee MH, Lee YK (2006) Surface-modified magnetite nanoparticles for hyperthermia: preparation, characterization, and cytotoxicity studies. Curr Appl Phys 6:e242–e246

    Google Scholar 

  8. Jordan A, Wuar P, Fählin H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperther 9:51–68

    Article  CAS  Google Scholar 

  9. Brusentsova TN, Brusentsov NA, Kuznetsov VD, Nikiforov VN (2005) Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-Tc agent for magnetic fluid hyperthermia. J Magn Magn Mater 293:298–302

    Article  CAS  Google Scholar 

  10. Chen S, Chiang C-L, Hsieh S (2010) Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications. J Magn Magn Mater 322:247–252

    Article  CAS  Google Scholar 

  11. Lemke A-J, Senfft von Pilsach M-I, Lübbe A, Bergemann C, Rless H, Felix R (2004) MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur J Radiol 14:1949–1955

    Article  Google Scholar 

  12. Reinl HM, Peller M, Hagmann M, Turner P, Issels RD, Reiser M (2005) Ferrite-enhanced MRI monitoring in hyperthermia. Magn Reson Imag 23:1017–1020

    Article  Google Scholar 

  13. Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomed 4:609–622

    Google Scholar 

  14. Cantillon-Murphy P, Wald LL, Zahn M, Adalsteinsson E (2010) Proposing magnetic nanoparticle hyperthermia in low-field MRI. Magn Reson A 36:36–47

    Google Scholar 

  15. Jing X-H, Yang L, Duan X-J, Xie B, Chen W, Lim Z, Tan H-B (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Jt Bone Spine 75:432–438

    Article  Google Scholar 

  16. Chen Y-C, Hsiao J-K, Liu H-M, Lai I-Y, Yao M, Hsu S-C, Ko B-S, Chen Y-C, Yang C-S, Huang D-M (2010) The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245:272–279

    Article  CAS  Google Scholar 

  17. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13:064031

    Article  Google Scholar 

  18. Mesjasz-Przybylowicz J, Przybylowicz WJ (2002) Micro-PIXE in plant sciences: present status and perspectives. Nucl Instrum Methods B 189:470–481

    Article  CAS  Google Scholar 

  19. Mcdonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    Article  CAS  Google Scholar 

  20. Becker JS, Zoriy MV, Dehnhardt M, Pickhardt C, Zilles K (2005) Copper, zinc, phosphorus and sulfur distribution in thin section of rat brain tissues measured by laser ablation inductively coupled plasma mass spectrometry: possibility for small-size tumor analysis. J Anal Atom Spectrom 20:912–917

    Article  CAS  Google Scholar 

  21. Becker JS (2010) Bioimaging of metals in brain tissue from micrometre to nanometre scale by laser ablation inductively coupled plasma mass spectrometry: state of the art and perspectives. Int J Mass Spectrom 289:65–75

    Article  CAS  Google Scholar 

  22. Santos MC, Wagner M, Wu B, Scheider J, Oehlmann J, Cadore S, Becker JS (2009) Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 80:428–433

    Article  CAS  Google Scholar 

  23. Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77:3208–3216

    Article  CAS  Google Scholar 

  24. Zoriy MV, Dehnhardt M, Matusch A, Becker JS (2008) Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 63:375–382

    Article  Google Scholar 

  25. Jackson B, Harper S, Smith L, Flinn J (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Anal Bioanal Chem 384:951–957

    Article  CAS  Google Scholar 

  26. Matusch A, Depboylu C, Palm C, Wu B, Höglinger GU, Schäfer MK-H, Becker JS (2010) Cerebral bio-imaging of Cu, Fe, Zn and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Am Soc Mass Spectrom 21:161–171

    Article  CAS  Google Scholar 

  27. Hare D, Burger F, Austin C, Fryer F, Grimm R, Reedy B, Scolyer RA, Thompson JF, Doble P (2009) Elemental bio-imaging of melanoma in lymph node biopsies. Analyst 134:450–453

    Article  CAS  Google Scholar 

  28. Seuma J, Bunch J, Cox A, McLeod C, Bell J, Murray C (2008) Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics 8:3775–3784

    Article  CAS  Google Scholar 

  29. Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kup C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17:4914–4918

    Article  CAS  Google Scholar 

  30. Costello LC, Feng P, Milon B, Tan M, Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7:111–117

    Article  CAS  Google Scholar 

  31. Ethem A, Yavuz G, Kocak M (2003) Effects of inflammation and antiinflammatory treatment on serum trace elements concentrations. Biol Trace Elem Res 93:95–103

    Article  Google Scholar 

  32. Milanino R, Marrell M, Moretti U, Concari E, Velo GP (1988) Copper and zinc status in rats with acute inflammation: focus on the inflamed area. Inflamm Res 24:356–364

    CAS  Google Scholar 

  33. Hall DM, Baumgardner KR, Oberley TD, Gisolfi CV (1999) Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Physiol Gastrointest Liver Physiol 276:G1195–G1203

    CAS  Google Scholar 

  34. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metast Rev 29:351–378

    Article  CAS  Google Scholar 

  35. Nielsen FH, Hunt CD, Uthus EO (1980) Interactions between essential trace and ultratrace elements. Ann NY Acad Sci 355:152–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Council, Taiwan, for funding this project (contract number NSC99-2113-M-007-017), the Instrument Center at National Tsing Hua University for the ICP-MS support, and Professor C. S. Chiang (Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University) for his valuable assistance and insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, YK., Jiang, PS., Yang, BS. et al. Using laser ablation/inductively coupled plasma mass spectrometry to bioimage multiple elements in mouse tumors after hyperthermia. Anal Bioanal Chem 401, 909–915 (2011). https://doi.org/10.1007/s00216-011-5144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5144-7

Keywords

Navigation