Skip to main content
Log in

Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sulfamethoxazole (SMX) is a synthetic antibiotic widely applied as a bacteriostatic drug to treat a number of diseases. SMX can persist in the environment for long periods of time because of its low biodegradability, which may result in various, direct and indirect, toxicological effects on the environment and on human health. Therefore, we have developed the electrochemical advanced oxidation process (AOP) “electro-Fenton” to degrade SMX in aqueous media. In this work, a detailed study of the evolution of toxicity of SMX and its degradation products in aqueous solutions, during treatment by the electro-Fenton AOP, is described, using the bioluminescence Microtox® method, based on the inhibition of luminescence of marine bacteria Vibrio fischeri. Samples were collected at various electrolysis times and analyzed by HPLC for quantifying the evolution of the degradation products, and their toxicity was measured by the Microtox® method. Our results demonstrated that the toxicity of SMX aqueous solutions varied considerably with the electrolysis time and the applied current intensity. This phenomenon could be explained by the formation and disappearance of several degradation products, including cyclic and/or aromatic intermediates, and short-chain acid carboxylic acids, having a toxicity different of the initial antibiotic. The curves of the % of bacterial luminescence inhibition vs. electrolysis time, corresponding to the evolution of the toxicity of the formed degradation products, were investigated and tentatively interpreted.

Effect of the applied electrolysis current intensity on the evolution of the V. fischeri bacteria luminescence inhibition with time during the electro-Fenton process of SMX aqueous solutions, after an exposure time of 15 min

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fenet H, Gomez E, Leclerc M, Casellas C (2006) Environ Risques Santé 5:243–247

    Google Scholar 

  2. Andreozzi R, Marotta R, Praéxus NA (2003) Chemosphere 50:1319–1330

    Article  CAS  Google Scholar 

  3. Göbel A, Mc Ardell CS, Joss B, Siegrist H, Giger W (2007) Sci Total Environ 372:361–371

    Article  Google Scholar 

  4. Herber T (2002) Toxicol Lett 131:5–17

    Article  Google Scholar 

  5. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  6. Boxall AB, Blackwell P, Cavallo R, Kay P, Tolls J (2002) Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  7. Blackwell PA, Boxall ABA, Kay P, Noble H (2005) J Agric Food Chem 53:2192–2201

    Article  CAS  Google Scholar 

  8. Watkinson AJ, Murby EJ, Costanzo SD (2007) Water Res 41:4164–4176

    Article  CAS  Google Scholar 

  9. Boxall AB, Fogg LA., Baird DJ, Lewis C, Telfer TC, Kolpin D, Gravell A, (2005) Targeted monitoring study for veterinary medicines in the UK environment. Final report to the UK environmental agency

  10. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  11. Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Environ Sci Technol 40:5282–5288

    Article  CAS  Google Scholar 

  12. Togola A, Budzinski HJ (2008) J Chromatogr A 1177:150–158

    Article  CAS  Google Scholar 

  13. Levi Y (2006) Environ Risques Santé 5:261–265

    Google Scholar 

  14. Ash RJ, Mauck B, Morgan M (2002) US Emerg Infect Dis 8:713–716

    Google Scholar 

  15. Khetan SK, Collins TJ (2007) Chem Rev 107:2319–2364

    Article  CAS  Google Scholar 

  16. Henney CR (ed) (1986) A handbook of drugs, 2nd edn. Churchill Livingston, Edinburgh

    Google Scholar 

  17. Sharma VK, Mishra SK, Ray AJ (2006) Chemosphere 62:128–134

    Article  CAS  Google Scholar 

  18. Dantas RF, Contreras S, Sans C, Esplugas S (2008) J Hazard Mater 150:790–794

    Article  CAS  Google Scholar 

  19. Hu L, Flanders PM, Miller PL, Strathmann TJ (2007) Water Res 41:2612–2626

    Article  CAS  Google Scholar 

  20. Beltrán FJ, Aguinaco A, García-Araya JF (2009) Water Res 43:1359–1369

    Article  Google Scholar 

  21. Trovó AG, Nogueira RFP, Agüera A, Sirtori C, Fernandez-Alba AR (2009) Chemosphere 77:1292–1298

    Article  Google Scholar 

  22. González O, Sans C, Esplugas S (2007) J Hazard Mater 146:459–464

    Article  Google Scholar 

  23. Trovó AG, Nogueira RFP, Agüera A, Fernandez-Alba AR, Sirtori C, Malato S (2009) Water Res 43:3922–3931

    Article  Google Scholar 

  24. Li S, Bejan D, McDowell MS, Bunce NJ (2008) J Appl Electrochem 38:151–159

    Article  CAS  Google Scholar 

  25. Boudreau J, Bejan D, Li S, Bunce NJ (2010) Ind Eng Chem Res 49:2537–2542

    Article  CAS  Google Scholar 

  26. Dirany A, Sirés I, Oturan N, Oturan MA, Chemosphere (2010), in press, doi: 10.1016/j.chemosphere.2010.08.032

  27. Dirany A, Efremova Aaron S, Oturan N, Sirés I, Aaron JJ, Oturan MA (2010) Luminescence 25:232–233

    Google Scholar 

  28. Oturan N, Trajkovska S, Oturan MA, Couderchet M, Aaron JJ (2008) Chemosphere 73:1550–1556

    Article  CAS  Google Scholar 

  29. Brillas E, Sirés I, Oturan MA (2009) Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  30. Escher BI, Bramaz N, Eggen RIL, Richter M (2005) Environ Sci Technol 39:3090–3100

    Article  CAS  Google Scholar 

  31. Escher BI, Bramaz N, Maurer M, Richter M, Sutter D, von Kanel C, Zschokke M (2005) Environ Toxicol Chem 24:750–758

    Article  CAS  Google Scholar 

  32. Baran W, Sochacka J, Wardas W (2006) Chemosphere 65:1295–1299

    Article  CAS  Google Scholar 

  33. Wammer KH, Lapara TM, McNeill K, Arnold WA, Swackhamer DL (2006) Environ Toxicol 25:1480–1486

    CAS  Google Scholar 

  34. Santos A, Yustos P, Quintanilla A, García-Ochoa F, Casas JA, Rodríguez JJ (2004) Environ Sci Technol 38:133–138

    Article  CAS  Google Scholar 

  35. Kaiser KLE, Palabrica VS (1991) Water Pollut Res J Can 26:361–431

    CAS  Google Scholar 

  36. Zazo JA, Casas JA, Molina CB, Quintanilla A, Rodriguez JJ (2007) Environ Sci Technol 41:7164–7170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Dirany thanks the French government (Ministère de l’Enseignement Supérieur et de la Recherche) for a Ph.D grant. S. Efremova Aaron thanks the University of Paris-Est for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Aaron.

Additional information

Published in the special issue Analytical and Bioanalytical Luminescence with Guest Editor Petr Solich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirany, A., Efremova Aaron, S., Oturan, N. et al. Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Anal Bioanal Chem 400, 353–360 (2011). https://doi.org/10.1007/s00216-010-4441-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4441-x

Keywords

Navigation