Skip to main content
Log in

Molecular size and mass distributions of native starches using complementary separation methods: Asymmetrical Flow Field Flow Fractionation (A4F) and Hydrodynamic and Size Exclusion Chromatography (HDC-SEC)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Starch consists of a mixture of two α-glucans built mainly upon α-(1,4) linkages: amylose, an essentially linear polymer, and amylopectin, a branched polymer containing 5–6% of α-(1,6) linkages. The aim of the present work was to analyze the structural properties of native starches displaying different amylose-to-amylopectin ratios and arising from different botanical sources, using asymmetrical flow field flow fractionation (A4F) and a combination of hydrodynamic and size-exclusion chromatography (HDC-SEC) coupled with multiangle laser light scattering, online quasi-elastic light scattering, and differential refractive index techniques. The procedure, based upon dimethyl sulfoxide pretreatment and then solubilization in water, generates a representative injected sample without altering the initial degree of polymerization. The amylopectin weight-average molar masses and radii of gyration were around 1.0 × 108–4.8 × 108 g mol-1 and 110–267 nm, respectively. For each starch sample, the hydrodynamic radius (R H) distributions and the molar mass distributions obtained from the two fractionation systems coupled with light scattering techniques were analyzed. The size determination scales were extended by means of R H calibration curves. HDC-SEC and A4F data could be matched. However, A4F enabled a better separation of amylopectins and therefore an enhanced structural characterization of the starches. The two advantages of this experimental approach are (1) it can directly obtain distributions as a function of both molar mass and size, while taking account of sample heterogeneity, and (2) it is possible to compare the results obtained using the different techniques through the direct application of R H distributions.

Compared macromolecular size distributions of Wild Type Rice Starch obtained using A4F and HDC-SEC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buleon A, Colonna P, Planchot V, Ball S (1998) Int J Biol Macromol 23(2):85–112

    Article  CAS  Google Scholar 

  2. Hanselmann R, Burchard W, Ehrat M, Widmer HM (1996) Macromolecules 29(9):3277–3282

    Article  CAS  Google Scholar 

  3. Radosta S, Haberer M, Vorwerg W (2001) Biomacromolecules 2(3):970–978

    Article  CAS  Google Scholar 

  4. Roger P, Baud B, Colonna P (2001) J Chromatogr A 917(1–2):179–185

    Article  CAS  Google Scholar 

  5. Roger P, Bello-Perez LA, Colonna P (1999) Polymer 40(25):6897–6909

    Article  CAS  Google Scholar 

  6. Rolland-Sabate A, Amani NG, Dufour D, Guilois S, Colonna P (2003) J Sci Food Agric 83(9):927–936

    Article  CAS  Google Scholar 

  7. Rolland-Sabate A, Colonna P, Mendez-Montealvo MG, Planchot V (2007) Biomacromolecules 8(8):2520–2532

    Article  CAS  Google Scholar 

  8. Gidley MJ, Hanashiro I, Hani NM, Hill SE, Huber A, Jane J-L, Liu Q, Morris GA, Rolland-Sabaté A, Striegel AM, Gilbert RG (2010) Carbohydr Polym 79(2):255–261

    Article  CAS  Google Scholar 

  9. Striegel AM, Plattner RD, Willett JL (1999) Anal Chem 71(5):978–986

    Article  CAS  Google Scholar 

  10. Burchard W (1999) Adv Polym Sci 143:113–194

    Article  CAS  Google Scholar 

  11. Rolland-Sabate A, Mendez-Montealvo MG, Colonna P, Planchot V (2008) Biomacromolecules 9(7):1719–1730

    Article  CAS  Google Scholar 

  12. Bello-Perez LA, Roger P, Baud B, Colonna P (1998) J Cereal Sci 27(3):267–278

    Article  CAS  Google Scholar 

  13. Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Biomacromolecules 10(8):2245–2253

    Article  CAS  Google Scholar 

  14. Dias RP, Fernandes CS, Mota M, Teixeira J, Yelshin AAFNDRP (2008) Carbohydr Polym 74(4):852–857

    Article  CAS  Google Scholar 

  15. Kim WJ, Eum CH, Lim ST, Han JH, You SG, Lee SAFNKW-J, Eum CH, Lim S-T, Han J-H, You S-G, Lee S (2007) Bull Korean Chem Soc 28(12):2489–2492

    Article  CAS  Google Scholar 

  16. Martin M (1998) Theory of field-flow fractionation, vol 39. Advances in chromatography. Marcel Dekker, New York

    Google Scholar 

  17. Wahlund KG, Giddings JC (1987) Anal Chem 59(9):1332–1339

    Article  CAS  Google Scholar 

  18. van Bruijnsvoort M, Wahlund KG, Nilsson G, Kok WT (2001) J Chromatogr A 925(1–2):171–182

    Article  Google Scholar 

  19. Nilsson L, Leeman M, Wahlund KG, Bergenstahl B (2006) Biomacromolecules 7(9):2671–2679

    Article  CAS  Google Scholar 

  20. Kostanski LK, Keller DM, Hamielec AE (2004) J Biochem Biophys Methods 58(2):159–186

    Article  CAS  Google Scholar 

  21. Gaborieau M, Gilbert RG, Gray-Weale A, Hernandez JM, Castignolles P (2007) Macromol Theory Simul 16(1):13–28

    Article  CAS  Google Scholar 

  22. Revillon A (1994) J Liq Chromatogr 17:2991–3023

    Article  Google Scholar 

  23. Planchot V, Colona P, Saulnier L (1997) In: Godon B, Loisel W (eds) Guide pratique d'analyses dans les industries des céréales. Lavoisier, Paris, pp 341–398

    Google Scholar 

  24. Larson BL (1953) Anal Chem 25(5):802–804

    Article  CAS  Google Scholar 

  25. Schimpf M, Caldwell C, Giddings JC (2000) Field flow fractionation handbook. Wiley-Interscience, New York

    Google Scholar 

  26. Williams PS, Giddings MC, Giddings JC (2001) Anal Chem 73(17):4202–4211

    Article  CAS  Google Scholar 

  27. Ioan CE, Aberle T, Burchard W (1999) Macromolecules 32(22):7444–7453

    Article  CAS  Google Scholar 

  28. Ioan CE, Aberle T, Burchard W (2000) Macromolecules 33(15):5730–5739

    Article  CAS  Google Scholar 

  29. Yau WW, Kirkland JJ, Bly DD (1979) Modern size exclusion liquid chromatography. Wiley-Interscience, New York

    Google Scholar 

  30. Stegeman G, Kraak JC, Poppe H (1991) J Chromatogr 550:721–739

    Article  CAS  Google Scholar 

  31. Galinsky G, Burchard W (1995) Macromolecules 28(7):2363–2370

    Article  CAS  Google Scholar 

  32. Burchard W (1983) Adv Polym Sci 48:1–124

    Article  CAS  Google Scholar 

  33. Hizukuri S (1986) Carbohydr Res 147:342–347

    Article  CAS  Google Scholar 

  34. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T (1999) Cereal Chem 76(5):629–637

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Conseil Régional des Pays de la Loire for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Rolland-Sabaté.

Additional information

Published in the special issue Separation Science of Macromolecules with Guest Editor André Striegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland-Sabaté, A., Guilois, S., Jaillais, B. et al. Molecular size and mass distributions of native starches using complementary separation methods: Asymmetrical Flow Field Flow Fractionation (A4F) and Hydrodynamic and Size Exclusion Chromatography (HDC-SEC). Anal Bioanal Chem 399, 1493–1505 (2011). https://doi.org/10.1007/s00216-010-4208-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4208-4

Keywords

Navigation