Skip to main content

Advertisement

Log in

Protein microarray assay for the screening of SH3 domain interactions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analysis of cellular signal transduction processes increasingly focuses on the systematic characterization of complete protein interaction networks. Understanding the interplay of signaling components enables insight into the molecular basis of diverse diseases such as cancer. This paves the way for the rational design of specific therapeutics. Protein interactions are often mediated by conserved modular domains, e.g., SH3-domains, which recognize proline-rich sequences in their cognate ligands. In the course of this study, different microarray formats (reactive silane monolayers and nitrocellulose on glass slides) and assay work flows were evaluated to develop a microarray based screening assay that permits the reliable identification of interactions between certain target proteins with a set of SH3 domains. Nine representative SH3 domains which were produced and purified as GST-fusion proteins were spotted on the microarray substrates and probed with two well-characterized ligands, the Nef protein from HIV-1 and the human protein Sam68. The best results from these low-density model arrays were obtained with nitrocellulose slides. We show that a straightforward and highly robust detection of ligand binding is achieved by staining with a fluorescently labeled antibody directed against the N-terminal His-tag attached to these proteins. The optimized assay protocol reported here allows for the identification of SH3-interactions with high reproducibility and adequate signal-to-background and signal-to-noise ratios, as well as the quantitative determination of relative binding affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APTES:

(3-Aminopropyl-)triethoxysilane here simplified as “aminosilane”

CFP:

Cyan fluorescent protein

EVH1:

Ena/VASP homology 1

FITC:

Fluorescein isothiocyanate

FRET:

Förster resonance energy transfer

GPTS:

(3-Glycidyloxypropyl)trimethoxy-silane here simplified as “epoxysilane”

GST:

Glutathione-S-transferase

HRP:

Horseradish peroxidase

MHS:

6-Maleinimidohexanoic acid-N-hydroxysuccinimide ester

Nef:

Negative factor (the term is a misnomer)

Ni-NTA-ATTO647N:

Atto 647 N-Ni2+-nitrilotriacetic acid conjugate

PBS:

Phosphate-buffered saline

PDZ:

Postsynaptic density/disk large/ZO1

PH:

Pleckstrin homology

RasGAP:

Ras GTPase activating protein

S/B:

Signal-to-background

S/N:

Signal-to-noise

Sam68:

Src-associated in mitosis of 68 kDa

SH2/SH3:

Src-homology 2/3 domain

Src:

Sarcoma

WW:

Domain with two conserved tryptophanes

YFP:

Yellow fluorescent protein

References

  1. Chan JN, Nislow C, Emili A (2010) Trends Pharmacol Sci 31:82–88

    Article  CAS  Google Scholar 

  2. Russell RB, Breed J, Barton GJ (1992) FEBS Lett 304:15–20

    Article  CAS  Google Scholar 

  3. Zhou MM, Ravichandran KS, Olejniczak ET, Petros AM, Meadows RP, Sattler M, Harlan JE, Wade WS, Burakoff SJ, Fesik FW (1995) Nature 378:584–592

    Article  CAS  Google Scholar 

  4. Pawson T (1988) Oncogene 3:491–495

    CAS  Google Scholar 

  5. Pawson T (1995) Nature 373:573–580

    Article  CAS  Google Scholar 

  6. Zarrinpar A, Bhattacharyya RP, Lim WA (2003) Sci STKE 22:RE8

    Google Scholar 

  7. Cesareni G, Panni S, Nardelli G, Castagnoli L (2002) FEBS Lett 513:18–44

    Article  Google Scholar 

  8. Mayer BJ (2001) J Cell Sci 114:1253–1263

    CAS  Google Scholar 

  9. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM et al (2000) Science 287:2204–2215

    Article  CAS  Google Scholar 

  10. Daly LEJ, RJ BAG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (1992) Cell 70:431–442

    Article  Google Scholar 

  11. Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J (1993) Cell 74:83–91

    Article  CAS  Google Scholar 

  12. Gout I, Dhand R, Hiles ID, Fry MJ, Panayotou G, Das P, Truong O, Totty NF, Hsuan J, Booker GW, Campbell ID, Waterfield MD (1993) Cell 75:25–36

    CAS  Google Scholar 

  13. Kärkkäinen S, Hiipakka M, Wang JH, Kleino I, Vaha-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K (2006) EMBO Rep 7:186–191

    Article  Google Scholar 

  14. Seet BT, Berry DM, Maltzman JS, Shabason J, Raina M, Koretzky GA, McGlade CJ, Pawson T (2007) EMBO J 26:678–689

    Article  CAS  Google Scholar 

  15. Panomics SH3 Domain Arrays I–IV

  16. Espejo A, Côte J, Bednarek A, Richard S, Bedford MT (2002) Biochem J 367:697–702

    Article  CAS  Google Scholar 

  17. Roeth JF, Collins KL (2006) Microbiol Mol Biol Rev 70:548–563

    Article  CAS  Google Scholar 

  18. Saksela K, Cheng G, Baltimore D (1995) EMBO J 14:484–491

    CAS  Google Scholar 

  19. Lukong KE, Richard S (2003) Biochim Biophys Acta 1653:53–86

    Google Scholar 

  20. He L, Olson DP, Wu X, Karpova TS, McNally JG, Lipsky PE (2003) Cytom A 55(2):71–85

    Article  Google Scholar 

  21. Schäferling M, Schiller S, Paul H, Kruschina M, Pavlickova P, Meerkamp M, Giammasi C, Kambhampati D (2002) Electrophoresis 23:3097–3105

    Article  Google Scholar 

  22. Preininger C, Sauer U (2004) Design, quality control and normalization of biosensor chips. In: Narayanaswamy R, Wolfbeis OS (eds) Springer Series on Chemical Sensors and Biosensors vol. 1(Optical Sensors). Springer, Berlin, pp 67–92

    Google Scholar 

  23. Schäferling M, Nagl S (2006) Anal Bioanal Chem 385:500–517

    Article  Google Scholar 

  24. Pirri G, Chiari M, Damin F, Meo A (2006) Anal Chem 78:3118–3124

    Article  CAS  Google Scholar 

  25. Asbach B, Ludwig C, Saksela K and Wagner R, in press

Download references

Acknowledgments

We thank Barbara Goricnik for spotting and evaluation of the nitrocellulose slides, Prof. Bo Liedberg (Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, Sweden) for the ellipsometric measurements

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling.

Additional information

This article was published in the special issue Optical Biochemical and Chemical Sensors (Europtrode X) with Guest Editor Jiri Homola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asbach, B., Kolb, M., Liss, M. et al. Protein microarray assay for the screening of SH3 domain interactions. Anal Bioanal Chem 398, 1937–1946 (2010). https://doi.org/10.1007/s00216-010-4202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4202-x

Keywords

Navigation