Skip to main content
Log in

Nanostructured materials in potentiometry

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Janata J (2004) Electroanalysis 16:1831–1835

    Article  CAS  Google Scholar 

  2. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622–625

    Article  CAS  Google Scholar 

  3. Pretsch E (2007) Trends Anal Chem 26:46–51

    Article  CAS  Google Scholar 

  4. Bakker E, Chumbimuni-Torres K (2008) J Braz Chem Soc 19:621–629

    Article  CAS  Google Scholar 

  5. Janata J (2009) Principles of chemical sensors. Springer, Heidelberg

    Book  Google Scholar 

  6. Krüger M (2001) Appl Phys Lett 78:1291–1294

    Article  Google Scholar 

  7. Gansen EJ, Rowe MA, Greene MB, Rosenberg D, Harvey TE, Su MY, Hadfield RH, Nam SW, Mirin RP (2007) Nat Photon 1:585–588

    Article  CAS  Google Scholar 

  8. Luo XL, Xu JJ, Zhao W, Chen HY (2004) Biosens Bioelectron 19:1295–1300

    Article  CAS  Google Scholar 

  9. Haddon RC (1996) J Am Chem Soc 118:3041–3042

    Article  CAS  Google Scholar 

  10. Kobayashi SI, Mori S, Lida S, Ando H, Takenobu T, Taguchi Y, Fujiwara A, Taninaka A, Shinohara H, Iwasa Y (2003) J Am Chem Soc 125:8116–8117

    Article  CAS  Google Scholar 

  11. Bondavalli P, Legagneux P, Privat D (2009) Sens Actuators B 140:304–318

    Article  Google Scholar 

  12. Cid CC, Jimenez-Cadena G, Riu J, Maroto A, Rius FX, Batema GD, Van Koten G (2009) Sens Actuators B 141:97–103

    Article  Google Scholar 

  13. Kauffman DR, Star A (2008) Angew Chem Int Ed 47:6550–6570

    Article  CAS  Google Scholar 

  14. Kauffman DR, Star A (2008) Chem Soc Rev 37:1197–1206

    Article  CAS  Google Scholar 

  15. Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ (2008) Biosens Bioelectron 24:279–283

    Article  CAS  Google Scholar 

  16. Wijaya IPM, Nie TJ, Gandhi S, Boro R, Palaniappan A, Hau GW, Rodríguez I, Suri CR, Mhaisalkar SG (2010) Lab Chip 10:634–638

    Article  CAS  Google Scholar 

  17. Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289–1292

    Article  CAS  Google Scholar 

  18. Stern E, Vacic A, Reed MA (2008) IEEE Trans Electron Devices 55:3119–3130

    Article  CAS  Google Scholar 

  19. Huang XJ, Choi YK (2007) Sens Actuators B 122:659–671

    Article  Google Scholar 

  20. Xia F, Farmer DB, Lin Y, Avouris P (2010) Nano Lett 10:715–718

    Article  CAS  Google Scholar 

  21. Tang YB, Lee CS, Chen ZH, Yuan GD, Kang ZH, Luo LB, Song HS, Liu Y, He ZB, Zhang WJ, Bello I, Lee ST (2009) Nano Lett 9:1374–1377

    Article  CAS  Google Scholar 

  22. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Nano Lett 9:1472–1475

    Article  CAS  Google Scholar 

  23. Ang PK, Chen W, Wee ATS, Loh KP (2008) J Am Chem Soc 130:14392–14393

    Article  CAS  Google Scholar 

  24. Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Nano Lett 9:3318–3322

    Article  CAS  Google Scholar 

  25. Bakker E, Pretsch E (2008) Trends Anal Chem 27:612–618

    Article  CAS  Google Scholar 

  26. Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Electroanalysis 12:1286–1292

    Article  CAS  Google Scholar 

  27. Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329–351

    Article  CAS  Google Scholar 

  28. Gyurcsányi RE, Nybäck A-S, Ivaska A, Tóth K, Nagy G (1998) Analyst 123:1339–1344

    Article  Google Scholar 

  29. Anastasova-Ivanova S, Mattinen U, Radu A, Bobacka J, Lewenstam A, Migdalski J, Danielewski M, Diamond D (2010) Sens Actuators B 146:199–205

    Article  Google Scholar 

  30. Lindner E, Buck RP (2000) Anal Chem 72:336A–345A

    Article  CAS  Google Scholar 

  31. Bobacka J (2006) Electroanalysis 18:7–18

    Article  CAS  Google Scholar 

  32. Michalska A (2006) Anal Bioanal Chem 384:391–406

    Article  CAS  Google Scholar 

  33. Sutter J, Lindner E, Gyurcsanyi RE, Pretsch E (2004) Anal Bioanal Chem 380:7–14

    Article  CAS  Google Scholar 

  34. Sutter J, Radu A, Peper S, Bakker E, Pretsch E (2004) Anal Chim Acta 523:53–59

    Article  CAS  Google Scholar 

  35. Lindfors TJ (2009) Solid State Electrochem 13:77–89

    Article  CAS  Google Scholar 

  36. Fouskaki M, Chaniotakis N (2008) Analyst 133:1072–1075

    Article  CAS  Google Scholar 

  37. Fierke MA, Lai CZ, Buhlmann P, Stein A (2010) Anal Chem 82:680–688

    Article  CAS  Google Scholar 

  38. Zhu Z, Zhang J, Zhu J, Lu W, Zi J (2007) IEEE Sens J 7:38–42

    Article  CAS  Google Scholar 

  39. Crespo GA, Macho S, Rius FX (2008) Anal Chem 80:1316–1322

    Article  CAS  Google Scholar 

  40. Ampurdanés J, Crespo GA, Maroto A, Sarmentero MA, Ballester P, Rius FX (2009) Biosens Bioelectron 25:344–349

    Article  Google Scholar 

  41. Crespo GA, Gugsa D, Macho S, Rius FX (2009) Anal Bioanal Chem 395:2371–2376

    Article  CAS  Google Scholar 

  42. Mousavi Z, Bobacka J, Lewenstam A, Ivaska A (2009) J Electroanal Chem 633:246–252

    Article  CAS  Google Scholar 

  43. Crespo GA, Macho S, Bobacka J, Rius FX (2009) Anal Chem 81:676–681

    Article  CAS  Google Scholar 

  44. Zhu J, Qin Y, Zhang Y (2009) Electrochem Commun 11:1684–1687

    Article  CAS  Google Scholar 

  45. Abbaspour A, Izadyar A (2007) Talanta 71:887–892

    Article  CAS  Google Scholar 

  46. Li S, Yang W, Chen M, Gao J, Kang J, Qi Y (2005) Mater Chem Phys 90:262–269

    Article  CAS  Google Scholar 

  47. Song W, Wu C, Yin H, Liu X, Sa P, Hu J (2008) Anal Lett 41:2844–2859

    Article  CAS  Google Scholar 

  48. Düzgün A, Maroto A, Mairal T, O’Sullivan C, Rius FX (2010) Analyst 135:1037–1041

    Article  Google Scholar 

  49. Zhou Y, Yu B, Guiseppi-Elie A, Sergeyev V, Levon K (2009) Biosens Bioelectron 24:3275–3280

    Article  CAS  Google Scholar 

  50. Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2009) Angew Chem Int Ed 48:7334–7337

    Article  Google Scholar 

  51. Chumbimuni-Torres KY, Wang J (2009) Analyst 134:1614–1617

    Article  CAS  Google Scholar 

  52. Ngeontae W, Janrungroatsakul W, Maneewattanapinyo P, Ekgasit S, Aeungmaitrepirom W, Tuntulani T (2009) Sens Actuators B 137:320–326

    Article  Google Scholar 

  53. Chumbimuni-Torres KY, Bakker E, Wang J (2009) Electrochem Commun 11:1964–1967

    Article  CAS  Google Scholar 

  54. Gyurcsányi RE (2008) Trends Anal Chem 27:627–639

    Article  Google Scholar 

  55. Shim JH, Kim J, Cha GS, Nam H, White RJ, White HS, Brown RB (2007) Anal Chem 79:3568–3574

    Article  CAS  Google Scholar 

  56. Studer A, Han X, Winkler FK, Tiefenauer LX (2009) Colloids Surf B 73:325–331

    Article  CAS  Google Scholar 

  57. Sperling RA, Parak WJ (2010) Philos Trans R Soc Lond A 368:1333–1383

    Article  CAS  Google Scholar 

  58. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280–3294

    CAS  Google Scholar 

  59. Frasco MF, Chaniotakis N (2010) Anal Bioanal Chem 396:229–240

    Article  CAS  Google Scholar 

  60. Knopp D, Tang D, Niessner R (2009) Anal Chim Acta 647:14–30

    Article  CAS  Google Scholar 

  61. Huang CC, Chiang C-K, Lin Z-H, Lee K-H, Chang H-T (2008) Anal Chem 80:1497–1504

    Article  CAS  Google Scholar 

  62. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  63. Zhao Y-L, Stoddart JF (2009) Acc Chem Res 42:1161–1171

    Article  CAS  Google Scholar 

  64. Wang J, Lin Y (2008) Trends Anal Chem 27:619–626

    Article  Google Scholar 

  65. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  66. Suspène C, Barattin R, Celle C, Carella A, Simonato J-P (2010) J Phys Chem C 114:3924–3931

    Article  Google Scholar 

  67. Simpkins BS, Mccoy KM, Whitman LJ, Pehrsson PE (2007) Nanotechnology 18:355301

    Article  Google Scholar 

  68. Park I, Li ZY, Pisano AP, Williams RS (2007) Nano Lett 7:3106–3111

    Article  CAS  Google Scholar 

  69. Skinner K, Dwyer C, Washburn S (2006) Nano Lett 6:2758–2762

    Article  CAS  Google Scholar 

  70. Sadik OA, Aluoch AO, Zhou A (2009) Biosens Bioelectron 24:2749–2765

    Article  CAS  Google Scholar 

  71. Nicu L, Leichle T (2008) J Appl Phys 104:111101

    Article  Google Scholar 

Download references

Acknowledgement

We thank the Spanish Ministry of Science and Innovation, MICINN, for supporting this work with project grant CTQ2007-67570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Xavier Rius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düzgün, A., Zelada-Guillén, G.A., Crespo, G.A. et al. Nanostructured materials in potentiometry. Anal Bioanal Chem 399, 171–181 (2011). https://doi.org/10.1007/s00216-010-3974-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3974-3

Keywords

Navigation