Skip to main content
Log in

Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accordingly, they have been employed in various environmental and clinical applications. The use of spore-based sensing systems offers the unique advantage of long-term preservation of the sensing cells by taking advantage of the environmental resistance and ruggedness of bacterial spores. In this work, we have incorporated spore-based whole-cell sensing systems into centrifugal compact disk (CD) microfluidic platforms in order to develop a portable sensing system, which should enable the use of these hardy sensors for fast on-field analysis of compounds of interest. For that, we have employed two spore-based sensing systems for the detection of arsenite and zinc, respectively, and evaluated their analytical performance in the miniaturized microfluidic format. Furthermore, we have tested environmental and clinical samples on the CD microfluidic platforms using the spore-based sensors. Germination of spores and quantitative response to the analyte could be obtained in 2.5–3 h, depending on the sensing system, with detection limits of 1 × 10−7 M for arsenite and 1 × 10−6 M for zinc in both serum and fresh water samples. Incorporation of spore-based whole-cell biosensing systems on microfluidic platforms enabled the rapid and sensitive detection of the analytes and is expected to facilitate the on-site use of such sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Date A, Pasini P, Daunert S (2007) Anal Chem 79:9391–9397

    Article  CAS  Google Scholar 

  2. Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S (2005) Anal Biochem 342:11–19

    Article  CAS  Google Scholar 

  3. Feliciano J, Xu S, Guan X, Lehmler H-J, Bachas L, Daunert S (2006) Anal Bioanal Chem 385:807–813

    Article  CAS  Google Scholar 

  4. Guan X, D'Angelo E, Luo W, Daunert S (2002) Anal Bioanal Chem 374:841–847

    Article  CAS  Google Scholar 

  5. Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S (2006) Anal Chem 78:7603–7609

    Article  CAS  Google Scholar 

  6. Billard P, DuBow MS (1998) Clin Biochem 31:1–14

    Article  CAS  Google Scholar 

  7. Shapiro E, Baneyx F (2007) J Biotechnol 132:487–493

    Article  CAS  Google Scholar 

  8. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Chem Rev 100:2705–2738

    Article  CAS  Google Scholar 

  9. Shetty RS, Deo SK, Liu Y, Daunert S (2004) Biotechnol Bioeng 88:664–670

    Article  CAS  Google Scholar 

  10. Shetty RS, Deo SK, Shah P, Sun Y, Rosen BP, Daunert S (2003) Anal Bioanal Chem 376:11–17

    CAS  Google Scholar 

  11. Turner K, Xu S, Pasini P, Deo S, Bachas L, Daunert S (2007) Anal Chem 79:5740–5745

    Article  CAS  Google Scholar 

  12. Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S (2000) Anal Chem 72:2423–2427

    Article  CAS  Google Scholar 

  13. Belkin S (2003) Curr Opin Microbiol 6:206–212

    Article  CAS  Google Scholar 

  14. Harms H, Wells M, van der Meer J (2006) Appl Microbiol Biotechnol 70:273–280

    Article  CAS  Google Scholar 

  15. Andersson H, van den Berg A (2003) Sens Actuators B Chem 92:315–325

    Article  Google Scholar 

  16. Heo J, Thomas KJ, Seong GH, Crooks RM (2002) Anal Chem 75:22–26

    Article  Google Scholar 

  17. Schilling EA, Kamholz AE, Yager P (2002) Anal Chem 74:1798–1804

    Article  CAS  Google Scholar 

  18. Schulz CM, Scampavia L, Ruzicka J (2002) Analyst 127:1583–1588

    Article  CAS  Google Scholar 

  19. Jakeway SC, de Mello AJ, Russell EL (2000) Fresenius J Anal Chem 366:525–539

    Article  CAS  Google Scholar 

  20. Mijatovic D, Eijkel JCT, Berg AVD (2005) Lab Chip 5:492–500

    Article  CAS  Google Scholar 

  21. Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Anal Chem 72:642A–651A

    Article  Google Scholar 

  22. Badr IHA, Johnson RD, Madou MJ, Bachas LG (2002) Anal Chem 74:5569–5575

    Article  CAS  Google Scholar 

  23. Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Anal Chem 71:4669–4678

    Article  CAS  Google Scholar 

  24. Johnson RD, Badr IHA, Barrett G, Lai S, Lu Y, Madou MJ, Bachas LG (2001) Anal Chem 73:3940–3946

    Article  CAS  Google Scholar 

  25. Mogensen KB, Klank H, Kutter JP (2004) Electrophoresis 25:3498–3512

    Article  CAS  Google Scholar 

  26. Wang J (2002) Talanta 56:223–231

    Article  CAS  Google Scholar 

  27. Lion N, Reymond F, Girault HH, Rossier JS (2004) Curr Opin Biotechnol 15:31–37

    Article  CAS  Google Scholar 

  28. Puckett LG, Dikici E, Lai S, Madou M, Bachas LG, Daunert S (2004) Anal Chem 76:7263–7268

    Article  CAS  Google Scholar 

  29. Li C, Dong X, Qin J, Lin B (2009) Anal Chim Acta 640:93–99

    Article  CAS  Google Scholar 

  30. Wang L, Li PCH, Yu H-Z, Parameswaran AM (2008) Anal Chim Acta 610:97–104

    Article  CAS  Google Scholar 

  31. Madou MJ, Lee LJ, Daunert S, Lai S, Shih C-H (2001) Biomed Microdevices 3:245–254

    Article  CAS  Google Scholar 

  32. Sato T, Kobayashi Y (1998) J Bacteriol 180:1655–1661

    CAS  Google Scholar 

  33. Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Wiley, New York

    Google Scholar 

  34. Griffin BA, Jurinak JJ (1973) Soil Sci 116:26–30

    Article  CAS  Google Scholar 

  35. Verpoorte E (2002) Electrophoresis 23:677–712

    Article  CAS  Google Scholar 

  36. Sato K, Hibara A, Tokeshi M, Hisamoto H, Kitamori T (2003) Adv Drug Deliv Rev 55:379–391

    Article  CAS  Google Scholar 

  37. Khandurina J, Guttman A (2002) J Chromatogr A 943:159–183

    Article  CAS  Google Scholar 

  38. Weigl BH, Bardell RL, Cabrera CR (2003) Adv Drug Deliv Rev 55:349–377

    Article  CAS  Google Scholar 

  39. Lai S, Wang S, Luo J, Lee LJ, Yang S-T, Madou MJ (2004) Anal Chem 76:1832–1837

    Article  CAS  Google Scholar 

  40. Abernathy CO, Liu Y-P, Longfellow D, Aposhian HV, Beck B (1999) Environ Health Perspect 107:593–597

    Article  CAS  Google Scholar 

  41. Rahman MM, Mukherjee D, Sengupta MK, Chowdhury UK, Lodh D (2002) Environ Sci Technol 36:5385–5394

    Article  CAS  Google Scholar 

  42. U.S. Environmental Protection Agency. http://www.epa.gov/safewater/arsenic/index.html. Accessed 2 July 2010

  43. Zhang X, Cornelis R, Jurgen De Kimpe, Mees L, Lameire N (1997) Clin Chem 43:406–408

    CAS  Google Scholar 

  44. Prasad A (1998) J Trace Elem Exp Med 11:63–87

    Article  CAS  Google Scholar 

  45. Hurley LS, Shrader RE (1975) Nature 254:427–429

    Article  CAS  Google Scholar 

  46. Rulon L, Robertson J, Lovell M, Deibel M, Ehmann W (2000) Biol Trace Elem Res 75:79–85

    Article  CAS  Google Scholar 

  47. Gonzalez C, Martin T, Cacho J, Brenas MT, Arroyo T, Garcia-Berrocal B, Navajo JA, Gonzalez-Buitrago JM (1999) Eur J Clin Invest 29:637–642

    Article  CAS  Google Scholar 

  48. Ghayour-Mobarhan M, Taylor A, New S, Lamb D, Ferns G (2005) Ann Clin Biochem 42:364–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Superfund Research Program (SRP) of the National Institute of Environmental Health Sciences (NIEHS; grant P42ES07380), the National Science Foundation (NSF; grant CHE-0718844), and the United States–Israel Binational Agricultural Research and Development (BARD) Fund (grant US-3864-06). We would like to thank Dr. Tsutomu Sato (Tokyo University of Agriculture and Technology, Japan) for kindly providing the plasmid pMUTin-23 and the bacterial strain B. subtilis ars-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Date, A., Pasini, P. & Daunert, S. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem 398, 349–356 (2010). https://doi.org/10.1007/s00216-010-3930-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3930-2

Keywords

Navigation