Skip to main content
Log in

Single-walled carbon nanotube as an effective quencher

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the past few years, single-walled carbon nanotubes (SWNTs) have been the focus of intense research motivated by their unique physical and chemical properties. This review specifically summarizes recent progress in the development of fluorescence biosensors that integrate the quenching property of SWNTs and the recognition property of functional nucleic acids. SWNTs are substantially different from organic quenchers, showing superior quenching efficiency for a variety of fluorophores, with low background and high signal-to-noise ratio, as well as other advantages derived from the nanomaterial itself. As the second key component of biosensors, functional nucleic acids can bind to either their complementary DNA or a target molecule with the ability to recognize a broad range of targets from metal ions to organic molecules, proteins, and even live cells. By taking advantage of the strengths and properties of both SWNTs and nucleic acid based aptamers, a series of fluorescence biosensors have been designed and fabricated for the detection of a broad range of analytes with high selectivity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244

    CAS  Google Scholar 

  2. Jun YW, Seo JW, Cheon JW (2008) Acc Chem Res 41:179–189

    CAS  Google Scholar 

  3. Wang L, Zhao W, Tan W (2008) Nano Res 1:99–115

    CAS  Google Scholar 

  4. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Anal Bioanal Chem 391:2469–2495

    CAS  Google Scholar 

  5. Gill R, Zayats M, Willner I (2008) Angew Chem Int Ed 47:7602–7625

    CAS  Google Scholar 

  6. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan Y (2003) Adv Mater 15:353–389

    CAS  Google Scholar 

  7. Lu W, Lieber CM (2007) Nat Mater 6:841–850

    CAS  Google Scholar 

  8. Dai H (2002) Acc Chem Res 35:1035–1044

    CAS  Google Scholar 

  9. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    CAS  Google Scholar 

  10. Iijima S (1991) Nature 354:56–58

    CAS  Google Scholar 

  11. Cao Q, Rogers JA (2009) Adv Mater 21:29–53

    CAS  Google Scholar 

  12. Sgobba V, Guldi DM (2009) Chem Soc Rev 38:165–184

    CAS  Google Scholar 

  13. Gruner G (2006) Anal Bioanal Chem 384:322–335

    CAS  Google Scholar 

  14. Allen BL, Kichambare PD, Star A (2007) Adv Mater 19:1439–1451

    CAS  Google Scholar 

  15. Balasubramanian K, Burghard M (2006) Anal Biochem 385:452–468

    CAS  Google Scholar 

  16. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Adv Mater 19:3214–3228

    CAS  Google Scholar 

  17. Lu FS, Gu LR, Meziani MJ, Wang X, Luo PJ, Veca LM, Cao L, Sun YP (2009) Adv Mater 21:139–152

    CAS  Google Scholar 

  18. Prato M, Kostarelos K, Bianco A (2008) Acc Chem Res 41:60–68

    CAS  Google Scholar 

  19. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Nature 386:474–477

    CAS  Google Scholar 

  20. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366

    CAS  Google Scholar 

  21. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Proc Natl Acad Sci USA 102:11600–11605

    CAS  Google Scholar 

  22. Chakravarty P, Marches R, Zimmerman NS, Swafford ADE, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Proc Natl Acad Sci USA 105:8697–8702

    CAS  Google Scholar 

  23. Heller DA, Baik S, Eurell TE, Strano MS (2005) Adv Mater 17:2793–2799

    CAS  Google Scholar 

  24. Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS (2008) Nat Nanotechnol 3:557–562

    Google Scholar 

  25. Welsher K, Liu Z, Daranciang D, Dai H (2008) Nano Lett 8:586–590

    CAS  Google Scholar 

  26. Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS (2008) Nano Lett 9:2800–2805

    Google Scholar 

  27. Liu Z, Li XL, Tabakman SM, Jiang KL, Fan SS, Dai HJ (2008) J Am Chem Soc 130:13540–13541

    CAS  Google Scholar 

  28. Martin RB, Qu LW, Lin Y, Harruff BA, Bunker CE, Gord JR, Allard LF, Sun YP (2004) J Phys Chem B 108:11447–11453

    CAS  Google Scholar 

  29. Lin SJ, Keskar G, Wu YN, Wang X, Mount AS, Klaine SJ, Moore JM, Rao AM, Ke PC (2006) Appl Phys Lett 89:143118

    Google Scholar 

  30. Chitta R, Sandanayaka ASD, Schumacher AL, D’Souza L, Araki Y, Ito O, D’Souza F (2007) J Phys Chem C 111:6947–6955

    CAS  Google Scholar 

  31. Casey JP, Bachilo SM, Weisman RB (2008) J Mater Chem 18:1510–1516

    CAS  Google Scholar 

  32. Pan BF, Cui DX, Ozkan CS, Ozkan M, Xu P, Huang T, Liu FT, Chen H, Li Q, He R, Gao F (2008) J Phys Chem C 112:939–944

    CAS  Google Scholar 

  33. Cui DX, Pan BF, Zhang H, Gao F, Wu RN, Wang JP, He R, Asahi T (2008) Anal Chem 80:7996–8001

    CAS  Google Scholar 

  34. Zheng M, Jagota A, Semke ED, Bruce A, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nat Maters 2:338–342

    CAS  Google Scholar 

  35. Wang S, Humpherys ES, Chung S, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Nat Maters 2:196–199

    Google Scholar 

  36. Tang XW, Bansaruntip S, Nakayama N, Yenilmez E, Chang YI, Wang Q (2006) Nano Lett 6:1632–1636

    CAS  Google Scholar 

  37. So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) J Am Chem Soc 127:11906–11907

    CAS  Google Scholar 

  38. Shim M, Shi NW, Dai HJ (2005) J Am Chem Soc 127:6021–6026

    Google Scholar 

  39. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003) Chem Biol 10:961–966

    CAS  Google Scholar 

  40. Storhoff JJ, Mirkin CA (1999) Chem Rev 99:1849–1862

    CAS  Google Scholar 

  41. Seeman NC (2003) Nature 421:427–431

    Google Scholar 

  42. Tuerk C, Gold L (1990) Science 249:505–510

    CAS  Google Scholar 

  43. Ellington AD, Szostak JW (1990) Nature 346:818–822

    CAS  Google Scholar 

  44. Osborne SE, Ellington AD (1997) Chem Rev 97:349–370

    CAS  Google Scholar 

  45. Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH (2006) Proc Natl Acad Sci USA 103:11838–11843

    CAS  Google Scholar 

  46. Yang CYJ, Jockusch S, Vicens M, Turro NJ, Tan WH (2005) Proc Natl Acad Sci USA 102:17278–17283

    CAS  Google Scholar 

  47. Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418

    CAS  Google Scholar 

  48. Liu J, Cao Z, Lu Y (2009) Chem Rev 109:1948–1998

    CAS  Google Scholar 

  49. McNamara JO, Andrechek ER, Wang Y, Viles D, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Nat Biotechnol 24:1005–1015

    CAS  Google Scholar 

  50. Famulok M, Hartig JS, Mayer G (2007) Chem Rev 107:3715–3743

    CAS  Google Scholar 

  51. Cho EJ, Yang L, Levy M, Ellington AD (2005) J Am Chem Soc 127:2022–2023

    CAS  Google Scholar 

  52. Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) J Am Chem Soc 129:3814–3915

    CAS  Google Scholar 

  53. Bayer TS, Smolke CD (2005) Nat Biotechnol 23:337–343

    CAS  Google Scholar 

  54. Qu LW, Martin RB, Huang WJ, Fu K, Zweifel D, Lin Y, Sun Y-P, Bunker CE, Harruff BA, Gord JR, Allard LF (2002) J Chem Phys 117:8089–8094

    CAS  Google Scholar 

  55. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) J Am Chem Soc 124:760–761

    CAS  Google Scholar 

  56. Murakami H, Nomura T, Nakashima N (2003) Chem Phys Lett 378:481–485

    CAS  Google Scholar 

  57. Fowler PW, Ceulemans A (1995) J Phys Chem 99:508–510

    CAS  Google Scholar 

  58. Bachilo RB, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366

    CAS  Google Scholar 

  59. Ahmad A, Kern K, Balasubramanian K (2009) Chem Phys Chem 10:905–909

    CAS  Google Scholar 

  60. Biju V, Itoh T, Baba Y, Ishikawa M (2006) J Phys Chem B 110:26068–26074

    CAS  Google Scholar 

  61. Li H, Martin RB, Harruff BA, Carino RA, Allard LF, Sun Y-P (2004) Adv Mater 16:896–900

    CAS  Google Scholar 

  62. Baskaran D, Mays JW, Zhang XP, Bratcher MS (2005) J Am Chem Soc 127:6916–6917

    CAS  Google Scholar 

  63. Sandanayaka ASD, Chitta R, Subbaiyan NK, D’Souza L, Ito O, D’souza F (2009) J Phys Chem C 113:13425–13432

    CAS  Google Scholar 

  64. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Science 302:1545–1548

    CAS  Google Scholar 

  65. Tu XM, Manohar S, Jagota A, Zheng M (2009) Nature 460:250–253

    CAS  Google Scholar 

  66. Lustig SR, Jagota A, Khripin C, Zheng M (2005) J Phys Chem B 109:2559–2566

    CAS  Google Scholar 

  67. Campbell JF, Tessmer I, Thorp HH, Erie DA (2008) J Am Chem Soc 130:10648–10655

    CAS  Google Scholar 

  68. Manohar S, Tang T, Jagota A (2007) J Phys Chem C 111:17835–17845

    CAS  Google Scholar 

  69. Johnson RR, Kohlmeyer A, Johnson ATC, Klein ML (2009) Nano Lett 9:537–541

    CAS  Google Scholar 

  70. Yarotski DA, Kilina SV, Talin AA, Tretiak S, Prezhdo OV, Balatsky AV, Taylor AJ (2009) Nano Lett 9:12–17

    CAS  Google Scholar 

  71. Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN (2006) Nano Lett 6:159–164

    CAS  Google Scholar 

  72. Zhao XC, Johnson JK (2007) J Am Chem Soc 129:10438–10445

    CAS  Google Scholar 

  73. Xu Y, Pehrsson PE, Chen LW, Zhang R, Zhao W (2007) J Phys Chem C 111:8638–8643

    CAS  Google Scholar 

  74. Wang KM, Tang ZW, Yang CYJ, Kim Y, Fang XH, Li W, Wu YR, Medley CD, Cao ZH, Li J, Colon P, Lin H, Tan WH (2009) Angew Chem Int Ed 48:856–870

    CAS  Google Scholar 

  75. Fang Y, Wu WH, Pepper JL, Larsen JL, Marras SAE, Nelson EA, Epperson WB, Christopher-Hennings J (2002) J Clin Microbiol 40:287–291

    CAS  Google Scholar 

  76. Poddar SK (2002) Mol Cell Probes 14:25–32

    Google Scholar 

  77. Roy S, Kabir M, Mondal D, Ali IK, Petri WAJ, Haque R (2005) J Clin Microbiol 43:2168–2172

    CAS  Google Scholar 

  78. Feldman SH, Bowman SG (2007) Lab Anim 36:43–50

    Google Scholar 

  79. Fang XH, Liu XJ, Schuster S, Tan WH (1999) J Am Chem Soc 121:292–2922

    Google Scholar 

  80. Li J, Tan W, Wang K, Xiao D, Yang X, He X, Tang Z (2001) Anal Sci 17:1149

    CAS  Google Scholar 

  81. Yao G, Tan WH (2004) Anal Biochem 331:216–223

    CAS  Google Scholar 

  82. Wang H, Li J, Liu H, Liu Q, Mei Q, Wang Y, Zhu J, He N, Lu Z (2002) Nucleic Acids Res 30:e61

    Google Scholar 

  83. Fang XH, Mi YM, Li JWJ, Beck T, Schuster S, Tan WH (2002) Cell Biochem Biophys 37:71–81

    CAS  Google Scholar 

  84. Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Proc Natl Acad Sci USA 100:13308–13313

    CAS  Google Scholar 

  85. Mhlanga MM, Vargas DY, Fung CW, Kramer FR, Tyagi S (2005) Nucleic Acids Res 33:1902–1912

    CAS  Google Scholar 

  86. Santangelo P, Nitin N, Laconte L, Woolums A, Bao G (2006) J Virol 80:682–688

    CAS  Google Scholar 

  87. Yang RH, Jin JY, Chen Y, Shao N, Kang HZ, Xiao ZY, Tang ZW, Wu YR, Zhu Z, Tan WH (2008) J Am Chem Soc 130:8351–8358

    CAS  Google Scholar 

  88. Yang RH, Tang ZW, Yan JL, Kang HZ, Kim Y, Zhu Z, Tan WH (2008) Anal Chem 80:7408–7413

    CAS  Google Scholar 

  89. Lerman LS (1961) J Mol Biol 3:18

    Article  CAS  Google Scholar 

  90. Guo Q, Lu M, Marky LA, Kallenbach NR (1992) Biochemistry 31:2451–2455

    CAS  Google Scholar 

  91. Lee K, Maisel K, Rouillard J, Gulari E, Kim J (2008) Chem Mater 20:2848–2850

    CAS  Google Scholar 

  92. Cox MM, Nelson DL (2000) Lehninger principles of biochemistry, 3rd edn. Worth, New York

    Google Scholar 

  93. Liu Y, Wang YX, Jin JY, Wang H, Yang RH, Tan WH (2009) Chem Commun 665–667

  94. Lebedkin S, Kareev I, Hennrich F, Kappes MM (2008) J Phys Chem C 112:16236–16239

    CAS  Google Scholar 

  95. Dolmans DEJG, Fukumura D, Jain RK (2003) Nat Rev Cancer 3:380–387

    CAS  Google Scholar 

  96. Castano AP, Mroz P, Hamblin MR (2006) Nat Rev Cancer 6:535–545

    CAS  Google Scholar 

  97. Zhu Z, Tang ZW, Phillips JA, Yang RH, Wang H, Tan WH (2008) J Am Chem Soc 130:10856–10857

    CAS  Google Scholar 

  98. Cho ES, Hong SW, Jo WH (2008) Macromol Rapid Commun 29:1798–1803

    CAS  Google Scholar 

  99. Liu Z, Winters M, Holodniy M, Dai HJ (2007) Angew Chem Int Ed 46:2023–2027

    CAS  Google Scholar 

  100. Kam NWS, Liu Z, Dai H (2005) J Am Chem Soc 127:12492–12493

    CAS  Google Scholar 

  101. Wu YR, Phillips JA, Liu HP, Yang RH, Tan WH (2008) ACS Nano 2:2023–2028

    CAS  Google Scholar 

  102. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ (2003) Toxicol Environ Health A 66:1909–1926

    CAS  Google Scholar 

  103. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Nano Lett 6:1121–1125

    CAS  Google Scholar 

  104. Liu Z, Davis C, Cai WB, He L, Chen XY, Dai HJ (2008) Proc Natl Acad Sci USA 105:1410–1415

    CAS  Google Scholar 

  105. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam WSN, Chu P, Liu Z, Sun XM, Dai HJ, Gambhir SS (2008) Nat Nanotechol 3:216–221

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Yang, R., You, M. et al. Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem 396, 73–83 (2010). https://doi.org/10.1007/s00216-009-3192-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3192-z

Keywords

Navigation