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Abstract 

FTIR and Raman spectral imaging can be used to simultaneously image a latent fingerprint and 
detect exogenous substances deposited within it.  These substances might include drugs of abuse or 
traces of explosives or gunshot residue.  In this work, spectral searching algorithms were tested for 
their efficacy in finding targeted substances deposited within fingerprints.  “Reverse” library 
searching, where a large number of possibly poor quality spectra from a spectral image are searched 
against a small number of high quality reference spectra, poses problems for common search 
algorithms as they are usually implemented.  Out of a range of algorithms which included 
conventional Euclidean distance searching, the spectral angle mapper (SAM) and correlation 
algorithms gave the best results when used with second derivative image and reference spectra.  All 
methods tested gave poorer performances with first derivative and undifferentiated spectra.  In a 
search against a caffeine reference, the SAM and correlation methods were able to correctly rank a 
set of 40 confirmed but poor quality caffeine spectra at the top of a dataset which also contained 
4096 spectra from an image of an uncontaminated latent fingerprint.  These methods also 
successfully and individually detected aspirin, diazepam and caffeine that had been deposited 
together in another fingerprint, and they did not indicate any of these substances as a match in a 
search for another substance which was known not to be present.  The SAM was used to successfully 
locate explosive components in fingerprints deposited on silicon windows.  The potential of other 
spectral searching algorithms used in the field of remote sensing is considered, and the applicability 
of the methods tested in this work to other modes of spectral imaging is discussed. 
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Introduction 

The use of vibrational spectroscopic techniques (Fourier transform infrared and Raman) has become 

increasingly important in forensic science, and the relatively recent development of spectral 

mapping and imaging instrumentation has given rise to exciting new applications in fingerprint 

enhancement [1-12] and trace evidence [13-16].  These two areas of forensic science intersect in 

studies that seek to identify trace evidence, such as particles of explosives or illicit drugs, within 

fingerprint deposits.  Spectral or chemical imaging is generally rapid and non-destructive, and 

simultaneously delivers spatial information about a fingerprint (i.e. an image) that can help to 

identify a suspect, and chemical information that might indicate substances handled by that person.  

The present study examines techniques for locating compounds of interest within a latent 

fingerprint, using spectral image data.  Among other issues, this will often involve searching for a 

small number of low quality target spectra among thousands of “empty” spectra, a problem that is 

not necessarily confined to fingerprint evidence, nor to vibrational spectroscopy. 

Latent fingerprints are a complex mixture of eccrine and sebaceous materials [17, 18] that may be 

contaminated by exogenous substances of various sources.  FTIR and Raman spectroscopy have 

been demonstrated as powerful tools for examining both the endogenous and exogenous materials 

found in latent fingerprints.  Wilkinson et al [19, 20], Bartick et al [2, 4] and Williams et al [21] used 

single point FTIR microscopy to chemically characterise latent fingerprints from adults.  Day et al [22] 

examined the Raman spectra of latent fingerprints as part of a study on the detection of drugs of 

abuse.  Hemmila et al [23] have recently used FTIR reflectance spectra of latent prints, with partial 

least squares regression, to show that fingerprints could be used to gauge the age of an individual, 

based on the fingerprint composition.  Apart from these, studies on uncontaminated latent 

fingerprints have tended to involve the use of FTIR imaging techniques.  Bartick et al [2, 4], Tahtouh 

et al [5] and Crane et al [9] demonstrated the micro-reflectance FTIR imaging of latent fingerprints 

on a variety of surfaces, while Ricci et al developed the ATR-FTIR imaging of latent fingerprints 

deposited directly onto the ATR crystal [11] and latent fingerprints on a gel lifter [10].  An important 

method for enhancing latent fingerprints is their development by cyanoacrylate fuming, which aims 

to cause a white polymer to form preferentially on the ridges of a fingerprint.  Tahtouh et al [5, 12] 

have demonstrated and optimised the micro-reflectance mode FTIR imaging of cyanoacrylate-

developed fingerprints on non-porous surfaces, using spectral second derivatives to enhance ridge 

contrast in the images. 



More recently, interest has focused on the spectroscopic detection of exogenous particles which 

might be found within latent fingerprint deposits, particularly explosives and drugs of abuse.  The 

early work in this area involved Raman microscopy on explosive-contaminated fingerprints [1, 24, 

25].  More recent Raman work has been carried out by Day et al on the detection of drugs of abuse 

in latent [22] and cyanoacrylate-fumed [26, 27] fingerprints.  The latter articles sought to determine 

whether spectral or chemical interference from the cyanoacrylate could be removed or minimised.  

West and Went [28, 29] have shown that Raman spectroscopy can be used to detect exogenous 

material such as drugs of abuse in fingerprints that have been developed with powders and lifted 

with adhesive tape. 

Most infrared studies of contaminants in latent fingerprints have involved spectral imaging.  Crane et 

al [9] were able to recover and analyse trace evidence found in a fingerprint on a postcard.  

Meanwhile, Chan and Kazarian [16] and Ricci et al [8, 10, 11] have demonstrated the ability of ATR-

FTIR imaging to detect trace materials with high sensitivity in fingerprints directly or indirectly (via 

gel lifters) deposited onto the ATR crystal.  In the latter case, the use of a variable angle ATR 

accessory enabled the separation of the spectra of the surface contaminants from those of the lifter 

itself, because imaging could be performed at different depths of penetration into the sample.  The 

ability to detect contaminants in lifted fingerprints is important because otherwise FTIR imaging is 

limited to (i) prints deposited on flat surfaces which are amenable in both size and composition to 

micro-reflection or ATR imaging and (ii) prints deposited by suspects in custody onto appropriately 

reflective slides or infrared-transparent windows.  In the latter case, transmission is the preferred 

technique, since the spectra are less likely to be distorted (than in reflection), and multiple 

fingerprints can be recorded and stored for further analysis (not practical with ATR). 

Grant et al also assessed the ability of infrared microspectroscopy (including imaging/mapping) to 

detect and identify particles of recently handled materials in latent fingerprints [7].  They trialled 

conventional and synchrotron infrared sources in the detection of particles of different sizes, 

recommending the latter for the smallest particles, despite the relative inaccessibility of synchrotron 

radiation to forensic scientists.  They also examined the use of (single point) micro-ATR FTIR 

spectroscopy in detecting contaminant particles and concluded that while ATR gives higher quality 

spectra, it is a destructive technique because particles from the fingerprint inevitably adhere to the 

ATR crystal.  Ricci et al, however, contend that ATR imaging gives sufficient spatial resolution to 

obviate the need for synchrotron infrared, and that the gel lifter technique they employed with ATR 

imaging is non-destructive [10].  An interesting aspect of the article by Grant et al was the idea of 

considering a spectral image as a “library” of spectra to be searched against one reference spectrum 



(or a small number of reference spectra).  This kind of “reverse searching” to find specific exogenous 

materials in a fingerprint was demonstrated using a commercial library search engine and a 

reference spectrum from a commercial infrared library.  There are, however, some important 

differences between standard library searches and the reverse searching of spectral images of 

fingerprints.  This is because the latter involves using a single high quality spectrum to search a 

“library” consisting of large numbers of “empty” spectra, and small numbers of possibly poor quality 

target spectra that have sloping baselines and other distortions due to the shape and optical 

properties of the contaminant particles.  Thus it is important to ensure that the search algorithm(s) 

used are well-suited to this application and/or that the data is pre-processed in an appropriate way. 

Summaries of infrared spectral searching algorithms and practices can be found in the literature and 

online [30-35].  Full spectrum algorithms (as opposed to peak search algorithms, for example) 

generally compare two spectra with some type of distance measure.  This is done by representing 

each spectrum as either a point or a vector in an n-dimensional space, where n is the number of 

resolution elements (wavelengths) in a spectrum.  The most successful and hence most popular 

algorithms used for spectral comparison (searching and classification) in vibrational spectroscopy are 

variations on the Euclidean distance (ED), Pearson’s correlation coefficient and the vector dot 

product.  First and even second derivative spectra are often used to improve searching success, as 

differentiation tends to remove the effects of curving baselines and resolve closely spaced peaks.  

Other spectroscopic application areas, especially remote sensing, have developed their own 

variations on these algorithms, for use with visible light and NIR reflectance spectral images of 

landscapes.  In remote sensing, the most popular spectral comparison algorithm has been the 

spectral angle mapper (SAM) [36], which is calculated as a vector-normalized dot-product that gives 

the cosine of the angle between two vectors (spectra).  Although the different types of spectroscopy 

impose their own intrinsic requirements on search algorithms, there are areas where cross-

fertilization of ideas can occur.  However, differing terminologies and the close inter-relationship of 

many of the full spectrum search algorithms often leads to confusion. 

Table 1 gives some of the common full spectrum search algorithms, and helps to illustrate some of 

the similarities and inter-relationships.  As an example, for reasons of vector geometry, the ED will 

give the same search ranking as the SAM if the spectra are vector-normalized prior to ED searching.  

It can also be seen from the formulas that the correlation is essentially the same as the SAM, except 

that the spectra are centred on their respective mean intensities. 

Many variations that attempt to improve on the SAM have been devised for remote sensing 

applications.  An example of these is the spectral similarity scale (SSS) [37], which is a combination of 



the Euclidean distance and correlation measures.  In infrared spectroscopy, as noted by Loudermilk 

et al [34], there has been little change in spectral library searching practice since the 1980s.  Brown 

and Donahue have used Fourier compression and the dot product measure to search a UV-visible 

library [38], and Lo and Brown have devised methods for searching libraries for components in 

spectra of mixtures, using Fourier compression and principal components regression [39, 40].  

Notable recent approaches include the Spectral Code Index (a method for indexing infrared spectral 

for SQL database searching) [41], and the group voting scheme, which uses complementary 

information from multiple standard search algorithms [34].  Vandenabeele et al reduced a Raman 

spectral library of synthetic pigments using principal components analysis (PCA) and carried out 

Euclidean distance searching using the scores for the first 28 principal components [42].  Neural 

networks have also been trialled in spectral comparison work [43-45].  Turner et al [46] have 

developed the spectral identity mapper (SIM) and tested it on infrared spectral image data.  This 

method for spectral comparison improves on the SAM by dealing with the possibility that two or 

more spectra (vectors) may have the same spectral angle from a reference, yet represent different 

substances (indeed, an infinite number of vectors lying on a cone around the reference vector can 

share the same angle to the reference).  Meanwhile, some authors in both remote sensing and 

infrared histopathology have started to use probabilistic measures of similarity between spectra [47] 

or groups of spectral metrics [48].  Such a measure, known as spectral information divergence (SID), 

has been shown to have advantages over the SAM, ED and correlation measures [49, 50]. 

Experimental 

To prepare fingerprint samples, a clean (washed with soapy water, rinsed and dried) index finger 

was rubbed over the face/neck and through the hair to ensure sufficient sebaceous secretions were 

present.  This finger was then lightly pressed into a small amountfew milligrams of the powdered 

substance of interest.  Any excess substance was brushed away with the other hand leaving behind 

nil or minimal visible (to the naked eye) trace of the substance on the finger.  The finger containing 

the substance of interest was then lightly pressed onto either a metal oxide-coated glass slide 

(Kevley Technologies) (for reflection experiments) or a silicon window (for transmission 

experiments). 

All samples were analysed using a Digilab/Varian Stingray infrared imaging system, which consisted 

of an FTS7000 FTIR spectrometer coupled to a UMA600 infrared microscope with a Lancer 64 × 64 

pixel focal plane array (FPA) detector.  Samples on the infrared-reflective slides were analysed in 

reflection mode, while those on the silicon windows were analysed in transmission mode.  All 

images were collected in the expanded field of view, where each 4096-pixel image tile is around 700 



× 700 µm in size.  Full fingerprint images consisted of 256 (16 × 16) tiles, giving an overall area of 

1.12 × 1.12 cm.  Groups of 16 (4 × 4) pixels were aggregated together to give single pixels so that the 

overall image contained 65,536 (256 × 256) spectra.  Spectral resolution was set at 16 cm-1, and 16 

co-added scans were collected, over the range 4000 – 900 cm-1 (with the lower end of this range 

corresponding to the low-energy cut-off for the detector).  Using these parameters, images were 

collected in 1 hour and 20 min, and were spectrally ratioed to a background image collected from a 

clean slide/window. 

Testing and comparison of searching algorithms was carried out on a specially constructed dataset, 

based on caffeine as a model fingerprint contaminant.  To collect representative and realistic spectra 

of caffeine in this role, pure caffeine powder was deposited scattered sparsely (so that particles did 

not overlap) onto a silicon window and a single image tile (4096 spectra) was collected.  From the 

spectra in this image, 42 caffeine spectra were selected.  This selection process involved manually 

choosing spectra from the image, followed by searching each spectrum selected against a collection 

of commercial spectral libraries containing organic compounds and forensic samples.  Different 

grades of spectra were chosen for further use.  A large number (31) of the spectra gave caffeine as 

their closest library match.  To make the dataset more realistic, the rest of the spectra were of lower 

quality, but were still confirmed to be caffeine through a combination of library searching and visual 

inspection.  These 42 spectra were used to augment the 4096 spectra from a single image tile of a 

non-contaminated latent fingerprint (also collected on a silicon window) to give a 4138-spectrum 

dataset composed of known caffeine spectra and spectra of pixels that were either empty or 

contained latent fingerprint deposits. 

In the first instance, all images and spectra obtained were viewed using the Digilab/Varian Win-IR 

Pro 3.4 software.  In general, images and/or selected reference spectra were exported to ENVI 4.2 

(ITT Visual Information Solutions), where spectral derivatives were calculated when required, and 

where the image spectra were converted to ASCII text files for importing into Microsoft Excel 2007 

for the implementation and comparison of the different spectral search algorithms.  For principal 

component (PCA) searching, spectra were exported from Excel in comma separated variable (CSV) 

format into Pirouette 3.11 (Infometrix).  The PCA results from Pirouette were exported directly back 

into Excel. 

As mentioned above, Microsoft Excel 2007 was generally used to implement and compare the 

various search algorithms.  Since the desired outcome of a search of the 4138-spectrum dataset 

against caffeine was to have the 42 confirmed caffeine spectra fill the first 42 “hits” (when the 

spectra were ranked according to similarity to the reference spectrum), the spreadsheet rows 



representing the caffeine spectra were colored according to spectral quality for easy assessment of 

algorithm performance. 

Large (65, 536-spectrum) fingerprint images of fingerprints contaminated with pharmaceuticals or 

explosives residues were exported into ENVI for derivatization and classification/searching using the 

SAM. 

Results and discussion 

Preliminary trials (not detailed above) on reverse library searching were conducted using commercial 

infrared library search software.  In these trials, micro-reflectance spectra from images of 

contaminated fingerprints were converted into a library that was then searched against a high 

quality reference spectrum of a contaminant (a pharmaceutical, a drug of abuse, or an explosive), 

using the three algorithms available (nominally, Euclidean distance, first derivative Euclidean 

distance and correlation).  The search results were sorted by hit quality index (HQI) from closest to 

poorest matches, and attempts were made to devise a method for determining a threshold HQI 

above which a positive result could be assured, and below which only non-matching (“empty”) 

spectra would be found.  Once a threshold had been determined, using an abrupt change in the HQI, 

the location of “matching” spectra could be mapped back onto the fingerprint image.  The chief 

drawback of this approach was the inability to vary the search algorithm beyond the three available, 

all of which gave false positives (apparently “empty” spectra which had higher HQI values than many 

genuine contaminant spectra) and false negatives (confirmed spectra of the contaminant which had 

lower HQI than many “empty” spectra).  Another problem was the spectral distortion (anomalous 

dispersion) which afflicts many reflectance spectra:  although the image spectra were collected from 

infrared-reflective slides (which can yield high quality transmission-reflection spectra of fine particles 

in ideal cases), in practice, the random size, shape and surface quality of the particles meant that the 

contaminant spectra suffered from varying levels of distortion, making the comparison  of these 

spectra with a single reference spectrum very difficult on occasion.  Finally, it could be postulated 

that the algorithms as implemented in the commercial software would not be optimised for the task 

of “reverse” library searching as described in the Introduction, where the library contains a high 

number of poor quality spectra.  However, despite these issues, some fingerprint images were very 

successfully searched using the commercial software, and results for cocaine and PETN 

(pentaerythritol tetranitrate) are shown in Figures 1 and 2.  In one experiment, the FTIR image of a 

fingerprint contaminated with paracetamol was searched for that substance.  As most of the 

paracetamol had been brushed away prior to the deposition of the fingerprint, only three discrete 

spectra in the image (out of 65,536) could be identified as paracetamol.  This demonstrated the 



power of spectral image searching, and also enabled the detection limit of this method to be 

estimated.  Given that the pixels in this case were 44 µm across, and assuming a spherical particle of 

about 22 µm radius at one of these three pixels, we can estimate a mass of 0.06 µg as the detection 

limit for paracetamol. 

Further work was conducted with three major changes in approach: (i) algorithms were 

implemented in a spreadsheet, giving complete control and knowledge of the processing and 

comparison of spectra; (ii) spectral images were collected in transmission mode from fingerprints 

deposited on silicon windows; (iii) in order to assess the relative abilities of different algorithms, the 

4096 spectra from a latent (uncontaminated) fingerprint image were augmented with 42 confirmed 

contaminant (caffeine) spectra chosen as described in the Experimental section.  This meant that in 

comparing the success of the different algorithms, there would be no ambiguity as to the identity of 

any spectra, but all spectra would still have been collected under identical conditions through the 

imaging of a fingerprint. 

The performance of the following algorithms (SAM, ED, correlation, Manhattan distance, PCA-ED, 

SSS, SIM) was compared as described above for three different forms of the spectral data: 

undifferentiated (but range scaled or “normalized” over a range of 0 to 1), first derivative, and 

second derivative.  The differentiated spectra were not range scaled.  The results for these three sets 

of experiments are summarized below: 

Undifferentiated spectra 

It was initially expected that range scaling would allow the algorithms to achieve their best results 

with undifferentiated data.  To reiterate, the best outcome for an algorithm (in a search against a 

caffeine reference spectrum) was for it to rank the 42 caffeine spectra above all of the other 4096 

spectra in the comparison dataset.  With the data in this form, none of the algorithms performed 

well.  The Euclidean distance, for example, ranked the caffeine spectra randomly between 328th and 

4088th.  The SAM method did rank caffeine spectra as the three most similar to the reference, but 

the rest were randomly ranked down to 3252nd.  The correlation algorithm performed slightly better 

than the SAM, with 7 caffeine spectra ranked in the top ten hits, but gave random rankings following 

these.  All other methods performed more poorly than this, and so in comparison, although 

correlation and SAM performed somewhat better than the rest, none of the algorithms could 

reliably distinguish fingerprint deposit spectra from those of caffeine.  The PCA-ED method 

performed particularly poorly.  When the principal components were examined after PCA was run 

on the image and reference spectra, it was obvious that the major components contained mostly 



noise and baseline artifacts, due to the poor quality of many of the spectra, and so this method 

seemed particularly unsuited to the task. 

When the caffeine spectra in the dataset were examined, it became obvious that this is not a typical 

spectral searching operation, because of the poor quality of many of these spectra.  High noise levels 

and severe baseline curvature were common problems.  The scaling process was actually 

inappropriate for these spectra, as often it was the baseline itself that was expanded over the full 

intensity range.  However, while the unscaled spectra gave better results, the algorithms still 

performed poorly.  Rather than investigate baseline correction algorithms, it was decided to study 

the effects of differentiation on the searching performance of the algorithms. 

First derivative spectra 

Of the 42 caffeine spectra in the dataset, 31 were identified visually as being of better quality than 

the other 11.  Once the spectral dataset had been differentiated and ranked according to Euclidean 

distance from the reference, most (29) of these better quality caffeine were ranked at the top of the 

list.  However, several fingerprint spectra were ranked before caffeine spectra, and the two lowest 

ranked caffeine spectra (out of the 42) were found at the 44th and 45th positions.  Using SAM, this 

situation improved: 36 of the 42 caffeine spectra were ranked at the top of the list, but five 

fingerprint spectra were ranked higher than the lowest-ranked caffeine spectrum, which was at 50th.  

The correlation algorithm performed identically to the SAM in its ranking of the caffeine spectra, 

with small differences in order occurring further down the hit list.  The performance of the SSS was 

slightly poorer than that of the SAM, with 32 out of the 42 caffeine spectra appearing at the top of 

the list, and the remainder of the list appearing similar to that generated by the SAM.  The other 

methods performed poorly using this data, and it was clear that they are inferior for this type of 

searching.  An overall comparison shows that the SAM and the correlation methods gave the best 

results, followed by the ED and then the SSS, which is the combination of the ED and correlation 

methods. 

Second derivative spectra 

Searching using second derivative spectra gave the best results for most of the search algorithms.  

Now, all three of the ED, SAM and correlation methods listed all of the caffeine spectra at the top of 

their hit lists, albeit in slightly different orders.  The SSS performed very well, but not quite as well as 

with the first derivative, and not quite as well as the three methods above (four caffeine spectra 

ranked lower than some fingerprint spectra).  PCA searching put 21 caffeine spectra at the top of the 

list, but the remaining spectra were interspersed with fingerprint spectra in the hit list, and one was 



ranked 4038th.  Here for the first time, the SIM was tested, and it performed very well: all but four 

caffeine spectra were at the top of the list; these four were ranked down to 70th.  When comparing 

the ED, SAM and correlation results to each other, the only distinction that could be made was that 

the ED did not order the caffeine spectra as closely to what a visual inspection of the spectra might 

have suggested.  This observation is based on the relative rankings of some of the highest and lowest 

quality caffeine spectra.  On the other hand, the SAM and correlation results were very similar, with 

only minor differences in the rankings of the known caffeine spectra.   

Truncation of spectra 

In an attempt to improve searching results and to reduce computation time, some algorithms (ED, 

SAM, correlation and SSS) were tested on truncated versions of the second derivative dataset 

discussed above.  When the data was truncated slightly (spectral range reduced to 987-3526 cm-1 to 

eliminate noisy data at low and high wavenumbers), the four methods performed equally well, with 

the ED improving upon its performance with the full dataset.  On the other hand, when the data was 

truncated to the “fingerprint” region of the spectrum (987-2005 cm-1 in this case), the ED and SSS 

gave poorer results, while the SAM performance stayed high.  For this reason, and since the SAM 

could be implemented with great ease and functionality in the ENVI software, it was decided that 

further tests would almost exclusively use this algorithm on truncated second derivative spectra. 

Further testing 

In this experiment, a 65,536 (256 × 256)-spectrum image of a fingerprint contaminated with three 

powdered pharmaceuticals (caffeine, aspirin and diazepam) was collected from a silicon window.  

The aim here was to observe the performance of the best search algorithms (SAM and ED on second 

derivative spectra) in searching a dataset when three different exogenous substances were present.  

For example, would all three substances be correctly identified?  Would a search for (say) caffeine 

rank diazepam and aspirin spectra higher than empty or fingerprint spectra?  SAM and ED second 

derivative searches for each of the three substances (against a high quality reference spectrum in 

each case) were performed.  Figure 3 shows the results of the searches performed on this data.  In 

the caffeine search, only one spectrum was positively identified as caffeine by the SAM (the first 

spectrum in the “hit list”), although this spectrum did not receive a high ranking by ED.  It appeared 

that most of the caffeine particles had been wiped away during the removal of excess material on 

the finger.  SAM searches for diazepam and aspirin were also successful, with mostly unambiguous 

results.  Aspirin proved to be far more persistent than the other two substances, as its spectra were 

by far more numerous.  During a visual examination of the SAM searching results, a spectrum which 



might represent a mixture of aspirin and diazepam was found, probably a result of a pixel being 

occupied by particles of both substances.  This spectrum was ranked 23rd in both the aspirin and 

diazepam searches.  This type of result reinforces the standard maxim of spectral searching, that the 

operator must visually confirm search results.  Examining the results of the three searches in more 

detail, it was observed that in any given search, the spectra of the two non-target contaminants 

usually ranked very low, but (as might be expected) were clustered together with like spectra. 

Another test for the SAM was to observe the result when fingerprint and contaminant spectra were 

searched against a reference spectrum of a substance which was not present.  In this case, the image 

containing aspirin, caffeine and diazepam described above was searched for paracetamol.  Once the 

hit list of the 65, 536 spectra was inspected, it was determined that none of the previously identified 

possible aspirin, caffeine or diazepam spectra appeared at the top of the list, and most of these were 

ranked lower than 10,000.  In situations like these, it is instructive to observe the value of the 

spectral angle (and its rate of change with respect to hit number) at thresholds between the 

contaminant and “empty” spectra. 

Searching for illicit substances in fingerprints 

As mentioned above, the SAM is implemented in the ENVI software package.  In this software, it can 

be used to indicate (using a single color) pixels in a spectral image whose spectra fall within a 

threshold angle to a reference spectrum.  Alternatively, it can assign a color intensity based on the 

magnitude of the spectral angle.  The latter functionality was used to examine fingerprints 

contaminated with explosives.  In these tests, FTIR images of three fingerprints were collected from 

silicon windows; these were contaminated with ammonium nitrate/fuel oil, Det cord and Pentex 

booster respectively.  Ammonium nitrate was successfully found in the first image in high quantities, 

so high that it was possible to form a high contrast image of the fingerprint using the intensity of 

ammonium nitrate spectral peaks from the raw spectra.  Using a reference spectrum of PETN (a 

component of Det cord collected in the laboratory), PETN particles were identified at several pixels 

in the second image, but it was difficult to form an image of the entire fingerprint at any frequency 

due to a lack of material deposited and because of possible smearing of the print.  PETN is also a 

component of the Pentex booster, but was not found in the third fingerprint when searched.  No 

image of this fingerprint could be formed at any frequency.  In this case, it seemed that the donor’s 

finger was too clean, and lacking in secretions which might have caused PETN to adhere, and which 

might also have yielded an image of the fingerprint ridges when deposited.  Skin particles were 

detected, and although TNT may have been present, a search for it was not possible due to a lack of 

reference spectra or material. 



Conclusion 

Spectral or chemical imaging yields large numbers of spectra that can be used to form chemically 

specific images of a sample, through either univariate or multivariate representations of the data.  

However, in many applications, spectral imaging is more useful as a means for collecting thousands 

of spectra simultaneously across a sample area.  In forensic science, this means a wealth of spatially 

resolved information about trace evidence that may be present; this information can usually be 

collected quickly and non-destructively.  Spectral searching of chemical images suggests itself quite 

readily [7ref Grant et al] as a variation on traditional spectral library searching, with the distinction 

that large numbers of the spectra in the “library” may be devoid of useful information, while those 

spectra that are of interest may be of poor quality, since the operator does not have the luxury of 

being able to prepare an ideal sample.  These aspects of searching for (say) trace evidence on a 

surface mean that not all of the commonly used library searching algorithms may be appropriate to 

the task. 

In the current study, the spectral angle mapper (SAM, or vector normalized dot product measure; 

also called cosine correlation analysis), along with the (Pearson’s) correlation measure, when used 

on second derivative spectra, were found to give the best results when searching for exogenous 

substances among the spectra in an FTIR image of a latent fingerprint.  Other methods, such as the 

Euclidean distance and the spectral identity mapper, performed almost as well as the SAM, 

particularly for carefully truncated second derivative data.  However, the SAM was selected here for 

further testing as it is easier to implement and its use is well developed in a commercial software 

package intended mainly for remote sensing scientists.  The success of SAM and the related 

correlation measure comes as no surprise considering that correlation on second derivative spectra 

is a popular spectral distance calculation method used prior to hierarchical cluster analysis in 

infrared histopathology [51].  In that case, the application of spectral derivatives is typically carried 

out with smoothing to remove some of the noise created in the differentiation process.  What is, 

perhaps, surprising is that the spectral comparison methods designed to improve upon the SAM 

(such as the spectral similarity scale or the spectral identity mapper) did not perform better than the 

SAM with the data used for testing here.  The SSS is designed for remote sensing data [37], but the 

SIM was originally tested by Turner et al [46] using infrared spectra.  The most likely explanation is 

that, because these methods performed very well, comparisons using more data are required before 

a final verdict can be given.  Our own attempts to improve on SAM using combination measures 

similar to the SSS failed to improve on the SAM (or correlation), usually because they were based on 



the SAM or correlation and another measure which did not perform as well as these and hence 

dragged the overall performance down. 

The conclusions reached here would probably apply to Raman spectral images, but the desirability of 

automated searching of spectral images is not limited to vibrational spectroscopy, and could, for 

example, be applied in the forensic analysis of visible light spectral image data of gunshot residue.  

However, other modes of spectroscopy would require their own assessment of algorithms and 

searching practices: for example, the use of derivatives in UV-visible spectroscopy would see a loss 

of useful information, as the typically broad spectral features would be levelled out, and the spectra 

would become significantly noisier. 

Insofar as the searching of infrared images of fingerprints is concerned, practical sampling 

considerations suggest that the situations where this technique may be useful are those where (i) a 

suspect in custody is directed to deposit prints onto an ideal surface (such as a silicon window or an 

ATR crystal); (ii) where fingerprints have been deposited into small, flat metallic objects and (iii) 

more importantly, where tape- or gel-lifted fingerprints can be transferred onto an ideal surface.  

The ability to generate the best possible spectral quality by using transmission or ATR imaging will 

help determine the possible success of subsequent spectral searching.  Other techniques are 

becoming available for the detection of exogenous materials in fingerprints: these include new mass 

spectrometry (MS) methods [52, 53] and methods which involve the fluorescent tagging of specific 

target compounds within a fingerprint using antibodies attached to magnetic particles [54-56].  

However, the MS methods will be destructive, and the tagging methods will require different 

taggant particles to be prepared for each target compound (and thus assumptions about which 

target molecules might be present).  Therefore it seems that spectral searching will have an 

important role to play because of its non-destructive nature and relative ease of implementation 

once spectral imaging equipment becomes more widely accessible and searching protocols have 

been established for different spectroscopic modes/regions.  However, further testing of more 

recent innovations in spectral similarity measures (such as SID) is required. 
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Table 1 
Some of the more popular spectral comparison algorithms.  The spectrum represented by xi (i  =  1, 
2, ..., n) is being compared to the reference ri.  The term xi is the intensity at the ith frequency 
position, ri is the corresponding value from the reference spectrum, and n is the number of 
frequency resolution elements.  For most of these measures, as given, a smaller value indicates 
greater similarity.  For the correlation measure, a smaller value of 1−ρ  indicates greater similarity. 
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distance (absolute 
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Fig. 1  a  Infrared spectral image (256×256 spectra) of cocaine-contaminated fingerprint at 3xxx cm–1.  
b  “Hit map” showing pixels at which cocaine was detected by searching against a cocaine reference 
spectrum using commercial search software.  c  Spectra of varying quality detected in the image and 
the reference spectrum used. 
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Fig. 2  a  Infrared spectral image of PETN-contaminated fingerprint at 2930 cm–1, showing fingerprint 
deposit only.  b  “Hit map” showing location of confirmed PETN particles/spectra as found by search 
against PETN reference using commercial software.  c  Overlay of PETN hit map (green) on infrared 
image of fingerprint. 



 

 

 
 
 
Fig. 3  Overlay of infrared spectral image of fingerprint at 2930 cm–1 with hit maps for three 
contaminants, aspirin, caffeine and diazepam, as found by SAM searching of second derivative 
spectra in image.  Highest spectral matches (a1-c1) and reference spectra (a2-b2) for the three 
compounds are shown underneath. 
 


