Skip to main content
Log in

Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we aimed at optimizing a sensitive and reliable method for a simultaneous determination of 31 pharmaceuticals belonging to predominant therapeutic classes identified in different types of sewage sludge proceeding from conventional and advanced wastewater treatment. Freeze-dried sewage sludge was extracted by pressurized liquid extraction technique using accelerated solvent extractor Dionex 300. In order to minimize interferences with matrix components and to preconcentrate target analytes, solid phase extraction was introduced in the method as a clean-up step. The entire method was validated for linearity, precision, accuracy, and method detection limits (MDLs). The method turned out to be specific, sensitive, and reliable for the analysis of sludge of different composition, type, and retention time in the process. The developed sample preparation protocol and previously published method for LC-MS/MS analysis (Gros et al., Talanta 70:678–690, 2006) were successfully applied to monitor the target pharmaceuticals in different types of sewage sludge, i.e., primary sludge, secondary sludge, treated sludge, and sludge proceeding from pilot-scale membrane bioreactors (MBRs) operating in parallel to the conventional activated sludge treatment. Among the investigated pharmaceuticals, 20 were detected in the sludge proceeding from full-scale installations, whereas the MBR sludge concentrations were below MDLs for several compounds. The highest concentrations were recorded for treated and primary sludge. For example, the mean concentration of ibuprofen in the digested sludge was 299.3 ± 70.9 ng g−1 dw, whereas in the primary sludge, it was enriched up to 741.1 ng g−1 dw. Other pharmaceuticals detected at relatively high concentrations were diclofenac, erythromycin, glibenclamide, ketoprofen, ofloxacin, azithromycin (up to 380.7, 164.2, 190.7, 336.3, 454.7, 299.6 ng g−1 dw in the primary sludge, respectively), gemfibrozil, loratidine, and fluoxetine (up to 189.1, 189.7 and 174.1 ng g−1 dw in the treated sludge, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Radjenović J, Petrović M, Barceló D (2007) Trends Anal Chem 26:1132–1144

    Article  Google Scholar 

  2. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Sci Total Environ 372:361–371

    Article  Google Scholar 

  3. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Water Res 39:3139–3152

    Article  CAS  Google Scholar 

  4. Heberer T (2002) Toxicology Letters 131:5–17

    Article  CAS  Google Scholar 

  5. Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Environ Sci Technol 40:357–363

    Article  CAS  Google Scholar 

  6. Clara M, Strenn B, Kreuzinger N, Kroiss H, Gans O, Martinez E (2005) Water Res 39:4797–4807

    Article  CAS  Google Scholar 

  7. Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Environ Toxicol Chem 22:2881–2889

    Article  CAS  Google Scholar 

  8. Radjenović J, Petrović M, Barceló D (2007) Anal Bioanal Chem 387:1365–1377

    Article  Google Scholar 

  9. Ternes TA (1998) Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  10. Vieno NM, Tuhkanen T, Kronberg L (2005) Environ Sci Technol 39:8220–8226

    Article  CAS  Google Scholar 

  11. Golet EM, Strehler A, Alder AC, Giger W (2002) Anal Chem 74:5455–5462

    Article  CAS  Google Scholar 

  12. Göbel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Environ Sci Technol 39:3981–3989

    Article  Google Scholar 

  13. Urase T, Kikuta T (2005) Water Res 39:1289–1300

    Article  CAS  Google Scholar 

  14. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environ Sci Technol 37:3243–3249

    Article  CAS  Google Scholar 

  15. La Guardia MJ, Hale RC, Harvey E, Matteson Mainor T (2001) Environ Sci Technol 35:4798–4804

    Article  Google Scholar 

  16. Ødegaard H, Paulsrud B, Karlsson I (2002) Water Sci Technol 46:295–303

    Google Scholar 

  17. Düring RA, Gäth S (2002) J Plant Nutr Soil Sci 165:544–556

    Article  Google Scholar 

  18. Gaspard PG, Schwartzbrod J (2003) Int J Hyg Environ Health 206:117–122

    Article  Google Scholar 

  19. Ternes TA, Bonerz M, Herrmann N, Löffler D, Keller E, Lacida BB, Alder AC (2005) J Chromatogr A 1067:213–223

    Article  CAS  Google Scholar 

  20. Göbel A, Thomsen A, McArdell CS, Alder AC, Giger W, Theiß N, Löffler D, Ternes TA (2005) J Chromatogr A 1085:179–189

    Article  Google Scholar 

  21. Díaz-Cruz MS, López de Alda MJ, Barceló D (2006) J Chromatogr A 1130:72–82

    Article  Google Scholar 

  22. Barron L, Tobin J, Paull B (2008) J Environ Monitor 10:353–361

    Article  CAS  Google Scholar 

  23. Löffler D, Ternes TA (2003) J Chromatogr A 1021:133–144

    Article  Google Scholar 

  24. Löffler D, Römbke J, Meller M, Ternes TA (2005) Environ Sci Technol 39:5209–5218

    Article  Google Scholar 

  25. Schlüsener MP, Spiteller M, Bester K (2003) J Chromatogr A 1003:21–28

    Article  Google Scholar 

  26. Jacobsen BN, Nyholm N, Pedersen BM, Poulsen O, Osterfeldt P (1993) Water Res 27:1505–1510

    Article  CAS  Google Scholar 

  27. Hamscher G, Sczesny S, Höper H, Nau H (2002) Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  28. Bossio JP, Harry J, Kinney CA (2008) Chemosphere 70:858–864

    Article  CAS  Google Scholar 

  29. Kibbey TCG, Paruchuri R, Sabatini DA, Chen L (2007) Environ Sci Technol 41:5349–5356

    Article  CAS  Google Scholar 

  30. Nieto A, Borrull F, Marce RM, Pocurull E (2007) J Chromatogr A 1174:125–131

    Article  CAS  Google Scholar 

  31. Gros M, Petrović M, Barceló D (2006) Talanta 70:678–690

    Article  CAS  Google Scholar 

  32. Miao XS, Yang JJ, Metcalfe CD (2005) Environ Sci Technol 39:7469–7475

    Article  CAS  Google Scholar 

  33. Hawthorne SB, Yang Y, Miller DJ (1994) Anal Chem 66:2912–2920

    Article  CAS  Google Scholar 

  34. SRC. http://www.syrres.com/

  35. Burford MD, Hawthorne SB, Miller DJ (1993) Anal Chem 65:1497–1505

    Article  CAS  Google Scholar 

  36. Hawthorne SB, Miller DJ, Burford MD, Langenfeld JJ, Eckert-Tilotta S, Louie PK (1993) J Chromatogr A 642:301–317

    Article  CAS  Google Scholar 

  37. Tolls J (2001) Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  38. Reemtsma T (2001) Trends Anal Chem 20:533–542

    Article  CAS  Google Scholar 

  39. Enke CG (1997) Anal Chem 69:4885–4893

    Article  CAS  Google Scholar 

  40. Mei H, Hsieh Y, Nardo C, Xu X, Wang S, Ng K, Korfmacher WA (2003) Rapid Comm Mass Spectrom 17:97–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Spanish Ministerio de Educación y Ciencia, projects CEMAGUA (CGL2007-64551/HID) and CTM2007-30524-E/TECNO, and Spanish Ministerio de Medio Ambiente y Medio Rural y Marino through the project MMAMRM 010/PC08/3-04. J.R. gratefully acknowledges the I3P Program (Itinerario integrado de inserción profesional), co-financed by CSIC (Consejo Superior de Investigaciones Científicas) and European Social Funds, for a predoctoral grant. Waters (Milford, USA) is gratefully acknowledged for providing the SPE cartridges and Merck (Darmstadt, Germany) for providing the HPLC columns. The authors would like to thank to Mrs. Asuncion Navarro from IDAEA and Ms. Cristina Fàbregas Peret from WWTP Terrassa for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Petrović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radjenović, J., Jelić, A., Petrović, M. et al. Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 393, 1685–1695 (2009). https://doi.org/10.1007/s00216-009-2604-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2604-4

Keywords

Navigation