Skip to main content
Log in

Antioxidant activity assay based on laccase-generated radicals

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel antioxidant activity assay was developed using laccase-oxidized phenolics. In a three-step approach, phenolic compounds were first oxidized by laccase. Laccase was then inhibited using 80% (v/v) methanol which also stabilized the oxidized phenolics which were then used to measure antioxidant activities of ascorbic acid and Trolox. From a number of laccase-oxidized phenolics screened for potential use in the measurement of antioxidant activities, syringaldazine emerged the best, giving results comparable to the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, which is currently used in conventional methods. Like DPPH radicals, two moles of stoichiometric oxidized syringaldazine were reduced by one mole of either ascorbic acid or Trolox. For the first time we show that antioxidant activity can be correlated to oxygen consumption by laccase. Reduction of one molecule of oxygen corresponded to oxidation of four molecules of syringaldazine which in turn is reduced by two molecules of Trolox or ascorbic acid. This study therefore demonstrates the great potential of using laccase-oxidized syringaldazine for the measurement of antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ (2002) Free Radic Biol Med 32:1264–1275

    Article  CAS  Google Scholar 

  2. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Clin Chem 52:601–623

    Article  CAS  Google Scholar 

  3. Pham-Huy LA, He H, Pham-Huy C (2008) Int J Biomed Sci 4:89–96

    CAS  Google Scholar 

  4. Sanchez-Moreno C, Larrauri A, Saura-Calixto F (1999) Food Res Int 32:407–412

    Article  CAS  Google Scholar 

  5. Jadhav SJ, Nimbalkar SS, Kulkarni AD, Madhavi DL (1996) In: Madhavi DL, Deshpande SS, Salunkhe DK (eds) Food antioxidant. Dekker, New York

    Google Scholar 

  6. Fogliano V, Verde V, Randazzo G, Ritieni A (1999) J Agric Food Chem 47:1035–1040

    Article  CAS  Google Scholar 

  7. Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Anal Chim Acta 613:1–19

    Article  CAS  Google Scholar 

  8. Perez-Jimenez J, Arranz S, Tabernero M, Rubio ME, Serrano J, Goni I, Saura-Calixto F (2008) Food Res Int 41:274–285

    Article  CAS  Google Scholar 

  9. Prior RL, Wu X, Schaich K (2005) J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  10. Sanchez-Moreno C (2002) Food Sci Technol Int 8:121–137

    Article  CAS  Google Scholar 

  11. Prior RL, Cao G (1999) Free Radic Biol Med 27:1173–1181

    Article  CAS  Google Scholar 

  12. Huang D, Ou B, Prior RL (2005) J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  13. Finley JW (2005) J Agric Food Chem 53:4288–4289

    Article  CAS  Google Scholar 

  14. Schaich KM (2005) ISHS Acta Horticulturae 709:79–94

    Google Scholar 

  15. Kulys J, Bratkovskaja I (2007) Talanta 75:526–531

    Article  CAS  Google Scholar 

  16. Liers C, Ullrich R, Pecyna M, Schlosser D, Hofrichter M (2007) Enzyme Microb Technol 41:785–793

    Article  CAS  Google Scholar 

  17. Riva S (2006) Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  18. Harkin JM, Obst JR (1973) CMLS 66:469–476

    Google Scholar 

  19. Johannes C, Majcherczyk (2000) Appl Environ Microbiol 66:524–528

    Article  CAS  Google Scholar 

  20. Leonowicz A, Edgechill RU, Bollag JM (1984) Arch Microbiol 137:89–96

    Article  CAS  Google Scholar 

  21. Minussi RC, Pastore GM, Durán N (2002) Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  22. Isaacs N, Van Eldik R (1997) J Chem Soc Perkin Trans 2:1465–1467

    Google Scholar 

  23. Camarero S, Ibarra D, Martinez NT, Romero J, Gutiqrrez A, Del Rio JC (2007) Enzyme Microb Technol 40:1264–1271

    Article  CAS  Google Scholar 

  24. Kim S, Moldes D, Cavaco-Paulo A (2007) Enzyme Microb Technol 40:1788–1793

    Article  CAS  Google Scholar 

  25. Rodríguez Couto S, Toca Herrera JL (2006) Biotechnol Adv 24:500–513

    Article  CAS  Google Scholar 

  26. Singh RP, Sharad S, Kapur S (2004) IJBCB 5:218–225

    Google Scholar 

  27. Almansa E, Kandelbauer A, Pereira L, Cavaco-Paulo A, Guebitz GM (2004) Biocatal Biotransform 22:315–324

    Article  CAS  Google Scholar 

  28. Winkler L (1888) Ber Dtsch Chem Ges 21:2843–2855

    Article  Google Scholar 

  29. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  30. Nyanhongo GS, Rodriguez Cuoto S, Guebitz MG (2006) Chemosphere 64:359–370

    Article  CAS  Google Scholar 

  31. Thurston CF (1994) Microbiology 140:19–26

    CAS  Google Scholar 

  32. Molyneux P (2004) Songklanakarin J Sci Technol 26:211–219

    CAS  Google Scholar 

  33. Betts WB, Dart RK, Ball MC (1987) Microbios 49:123–129

    CAS  Google Scholar 

  34. Henriquez C, Aliaga C, Lissi E (2004) J Chil Chem Soc 49:65–67

    Article  CAS  Google Scholar 

  35. Osman AM, Wong KKY, Fernyhough A (2006) Biochem Biophys Res Commun 346:321–329

    Article  CAS  Google Scholar 

  36. Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guebitz G, Buchert J (2002) Enzyme Microb Technol 31:403–410

    Article  CAS  Google Scholar 

  37. Friaa O, Brault D (2006) Org Biomol Chem 4:2417–2423

    Article  CAS  Google Scholar 

  38. Guo JT, Lee HL, Chiang SH, Lin FI, Chang CY (2001) J Food Drug Anal 9:96–101

    Google Scholar 

  39. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  40. Berg RVD, Haenen GRMM, Berg HD, Bast A (1999) Food Chem 66:511–517

    Article  Google Scholar 

  41. Freire RS, Duran N, Kubota LT (2002) Anal Chim Acta 463:229–338

    Article  CAS  Google Scholar 

  42. Jarosz-Wilkolazka A, Ruzgas T, Gorton L (2004) Enzyme Microb Technol 35:238–241

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was made possible by the support offered by the Austrian Academic Exchange Service (ÖAD) and European Union Biorenew Project [Sixth Framework Programme (FP6–2004-NMP-NI-4)]. This work is dedicated to Professor Herfried Griengl on the occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gibson S. Nyanhongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugroho Prasetyo, E., Kudanga, T., Steiner, W. et al. Antioxidant activity assay based on laccase-generated radicals. Anal Bioanal Chem 393, 679–687 (2009). https://doi.org/10.1007/s00216-008-2466-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2466-1

Keywords

Navigation