Skip to main content
Log in

A new method for the detection of ATP using a quantum-dot-tagged aptamer

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer (FRET) between a quantum dot as donor and an organic fluorophore as acceptor has been widely used for detection of nucleic acids and proteins. In this paper, we developed a new method, characterized by 605-nm quantum dot (605QD) fluorescence intensity increase and corresponding Cy5 fluorescence intensity decrease, to detect adenosine triphosphate (ATP). The new method involved the use of three different oligonucleotides: 3′-biotin-modified DNA that binds to streptavidin-conjugated 605QD; 3′-Cy5-labelled DNA; and a capture DNA consisting of an ATP aptamer and a sequence which could hybridize with both 3′-biotin-modified DNA and 3′-Cy5-labelled DNA. In the absence of the target ATP, the capture DNA binds to 3′-biotin-modified DNA and 3′-Cy5-labelled DNA, bringing quantum dot and Cy5 into close proximity for greater FRET efficiency. When ATP is introduced, the release of the 3′-Cy5-labelled DNA from the hybridization complex took place, triggering 605QD fluorescence intensity increase and corresponding Cy5 fluorescence intensity decrease. Taken together, the virtue of FRET pair 605QD/Cy5 and the property of aptamer-specific conformation change caused by aptamer–ATP interaction, combined with the fluorescence intensity change of both 605QD and Cy5, provide prerequisites for simple and convenient ATP detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature 355:564–566

    Article  CAS  Google Scholar 

  2. Huizenga DE, Szostak JW (1995) Biochemistry 34:656–665

    Article  CAS  Google Scholar 

  3. Stojanovic MN, Prada PD, Landry DW (2001) J Am Chem Soc 123:4928–4931

    Article  CAS  Google Scholar 

  4. Ellington AD, Szostak JW (1990) Nature 346:818–822

    Article  CAS  Google Scholar 

  5. Tuerk C, Gold L (1990) Science 249:505–510

    Article  CAS  Google Scholar 

  6. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) J Am Chem Soc 127:17990–17991

    Article  CAS  Google Scholar 

  7. Li BL, Wei H, Dong SJ (2007) Chem Commun 1:73–75

    Article  Google Scholar 

  8. Nutiu R, Li YF (2003) J Am Chem Soc 125:4771–4778

    Article  CAS  Google Scholar 

  9. Radi A-E, O’Sullivan CK (2006) Chem Commun 32:3432–3434

    Article  Google Scholar 

  10. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) J Am Chem Soc 128:3138–3139

    Article  CAS  Google Scholar 

  11. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Angew Chem Int Ed 44:5456–5459

    Article  CAS  Google Scholar 

  12. Liu JW, Lu Y (2006) Angew Chem Int Ed 45:90–94

    Article  CAS  Google Scholar 

  13. Wang J, Wang LH, Liu XF, Liang ZQ, Song SP, Li WX, Li GX, Fan CH (2007) Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  14. Zuo XL, Song SP, Zhang J, Pan D, Wang LJ, Fan CH (2007) J Am Chem Soc 129:1042–1043

    Article  CAS  Google Scholar 

  15. Zayats M, Huang Y, Gill R, Ma C-A, Willner I (2006) J Am Chem Soc 128:13666–13667

    Article  CAS  Google Scholar 

  16. Wang J, Jiang YX, Zhou CS, Fang XH (2005) Anal Chem 77:3542–3546

    Article  CAS  Google Scholar 

  17. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  18. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  CAS  Google Scholar 

  19. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) Proc Nat Acad Sci USA 103:4841–4845

    Article  CAS  Google Scholar 

  20. Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) J Am Chem Soc 127:9328–9329

    Article  CAS  Google Scholar 

  21. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Nat Biotech 21:41–46

    Article  CAS  Google Scholar 

  22. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301–310

    Article  CAS  Google Scholar 

  23. Zhang C-Y, Yeh H-C, Kuroki MT, Wang T-H (2005) Nat Mater 4:826–831

    Article  Google Scholar 

  24. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Nat Mater 5:581–589

    Article  CAS  Google Scholar 

  25. Hansen JA, Wang J, Kawde A-N, Xiang Y, Gothelf KV, Collins G (2006) J Am Chem Soc 128:2228–2229

    Article  CAS  Google Scholar 

  26. Zhang C-Y, Johnson LW (2006) Anal Chem 78:5532–5537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank National Natural Science Foundation (30770570) and 863 Program of Ministry of Science and Technology (2007AA062Z403) the financial support. We are also grateful for help from Professor Dazhong Ying.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Deng.

Additional information

Zhang Chen and Guang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Li, G., Zhang, L. et al. A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal Bioanal Chem 392, 1185–1188 (2008). https://doi.org/10.1007/s00216-008-2342-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2342-z

Keywords

Navigation