Skip to main content
Log in

Particle size characterization by quadruple-detector hydrodynamic chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Particle size and shape and their distribution directly influence a variety of end-use material properties related to packing, mixing, and transport of powders, solutions, and suspensions. Many of the techniques currently employed for particle size characterization have found limited applicability for broadly polydisperse and/or nonspherical particles. Here, we introduce a quadruple-detector hydrodynamic chromatography (HDC) method utilizing static multiangle light scattering (MALS), quasi-elastic light scattering (QELS), differential viscometry (VISC), and differential refractometry (DRI), and apply the technique to characterizing a series of solid and hollow polystyrene latexes with diameters in the approximate range of 40–400 nm. Using HDC/MALS/QELS/VISC/DRI, we were able to determine a multiplicity of size parameters and their polydispersity and to monitor the size of the particles across the elution profile of each sample. Using self-similarity scaling relationships between the molar mass and the various particle radii, we were also able to ascertain the shape of the latexes and the shape constancy as a function of particle size. The particle shape for each latex was confirmed by the dimensionless ratio ρR G,z /R H,z which, in addition, provided information on the structure (compactness) of the latexes as a function of particle size. Solid and hollow polystyrene latex samples were also differentiable using these methods. Extension of this method to nonspherical, fractal objects should be possible.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. White HE, Walton SF (1937) J Am Ceram Soc 20:155–160

    Article  CAS  Google Scholar 

  2. Fidleris V, Whitmore RL (1961) Rheol Acta 1:573–580

    Article  CAS  Google Scholar 

  3. Patton TC (1964) Paint flow and pigment dispersion. Wiley, New York

    Google Scholar 

  4. Patterson GK, Zakin JL, Rodriguez JM (1969) Ing Eng Chem 61:22–30

    Article  CAS  Google Scholar 

  5. Cumberland DJ, Crawford RJ (1987) The packing of particles. Elsevier, Amsterdam

    Google Scholar 

  6. Cheng DC-H, Kruszewski AP, Senior JR, Roberts TA (1990) J Mater Sci 25:353–373

    Article  CAS  Google Scholar 

  7. Macosko CW (1994) Rheology—principles, measurements, and applications. Wiley-VCH, New York

    Google Scholar 

  8. Duran J (2000) Sands, powders, and grains. An introduction to the physics of granular materials. Springer, New York

    Google Scholar 

  9. Osman MA, Atallah A (2006) Polymer 47:2357–2368

    Article  CAS  Google Scholar 

  10. Hill A, Carrington S (2006) Am Lab 38:22–24

    CAS  Google Scholar 

  11. Provder T, Texter J (eds) (2004) Particle sizing and characterization. ACS symposium series 881. American Chemical Society, Washington

  12. Barth HG, Flippen RB (1995) Anal Chem 67:257R–272R

    Article  Google Scholar 

  13. Xu R (2000) Particle characterization—light scattering methods. Kluwer, Dordrecht

    Google Scholar 

  14. Rawle A (2003) Surf Coatings Int Part A Coatings J 86:58–65

    CAS  Google Scholar 

  15. Small H, Langhorst MA (1982) Anal Chem 54:892A–898A

    Article  CAS  Google Scholar 

  16. Meehan E, Tribe K (2004) In: Provder T, Texter J (eds) Particle sizing and characterization. ACS symposium series 881. American Chemical Society, Washington, pp 175–183

    Google Scholar 

  17. White RJ (1997) Polym Int 43:373–379

    Article  CAS  Google Scholar 

  18. Wyatt PJ (1998) J Colloid Interface Sci 197:9–20

    Article  CAS  Google Scholar 

  19. Schure MR, Palkar SA (2002) Anal Chem 74:684–695

    Article  CAS  Google Scholar 

  20. Small HJ (1974) Colloid Interface Sci 48:147–161

    Article  CAS  Google Scholar 

  21. Zarrin F, Dovichi NJ (1985) Anal Chem 57:1826–1829

    Article  CAS  Google Scholar 

  22. Williams A, Varela E, Meehan E, Tribe K (2002) Int J Pharm 242:295–299

    Article  CAS  Google Scholar 

  23. Blom MT, Chmela E, Oosterbroek RE, Tijssen R, van den Berg A (2003) Anal Chem 75:6761–6768

    Article  CAS  Google Scholar 

  24. Revillon A (1994) J Liq Chromatogr 17:2991–3023

    Article  Google Scholar 

  25. Prud’homme RK, Hoagland DA (1983) Sep Sci Technol 18:121–134

    Article  CAS  Google Scholar 

  26. Hoagland DA, Prud’homme RK (1988) J Appl Polym Sci 36:935–955

    Article  CAS  Google Scholar 

  27. Hoagland DA, Prud’homme RK (1989) Macromolecules 22:775–781

    Article  CAS  Google Scholar 

  28. McHugh AJ (1989) In: Hunt BJ, Holding SR (eds) Size exclusion chromatography. Blackie, Glasgow, pp 248–270

    Google Scholar 

  29. Hoagland DA (1996) In: Potschka M, Dubin PL (eds) Strategies in size exclusion chromatography. ACS symposium series 635. American Chemical Society, Washington, pp 173–188

    Google Scholar 

  30. Huang SS (1999) In: Wu C-S (ed) Column handbook for size exclusion chromatography. Academic, San Diego, pp 597–610

    Chapter  Google Scholar 

  31. Stegeman G, Kraak JC, Poppe HJ (1991) Chromatogr 550:721–739

    Article  CAS  Google Scholar 

  32. Striegel AM (2005) Anal Chem 77:104A–113A

    Article  CAS  Google Scholar 

  33. Klavons JA, Dintzis FR, Millard MM (1997) Cereal Chem 74:832–836

    Article  CAS  Google Scholar 

  34. von Wald G, Langhorst M (1991) In: Provder T (ed) Particle size distribution II—assessment and characterization. ACS symposium series 472. American Chemical Society, Washington, pp 308–323

    Google Scholar 

  35. McGowan GR, Langhorst MA (1982) J Colloid Interface Sci 89:94–106

    Article  CAS  Google Scholar 

  36. Anderson M, Wittgren B, Wahlund K (2003) Anal Chem 75:4279–4291

    Article  CAS  Google Scholar 

  37. Smith MJ, Haidar IA, Striegel AM (2007) Analyst 132:455–460

    Article  CAS  Google Scholar 

  38. Burchard W (1999) Adv Polym Sci 143:113–194

    Article  CAS  Google Scholar 

  39. Witten TA (1998) Rev Mod Phys 70:1531–1544

    Article  CAS  Google Scholar 

  40. Striegel AM, Plattner RD, Witten JL (1999) Anal Chem 71:978–986

    Article  CAS  Google Scholar 

  41. Wyatt PJ (1993) Anal Chim Acta 272:1–40

    Article  CAS  Google Scholar 

  42. Cotts PM (2005) In: Striegel AM (ed) Multiple detection in size-exclusion chromatography. ACS symposium series 893. American Chemical Society, Washington, pp 52–75

    Google Scholar 

  43. Stauch O, Schubert R, Savin G, Burchard W (2002) Biomacromolecules 3:565–578

    Article  CAS  Google Scholar 

  44. Mandelbrot BB (1983) The fractal geometry of nature—updated and augmented. Freeman, New York

    Google Scholar 

  45. Byrne EP, Fitzpatrick JJ, Pampel LW, Titchener-Hooker NJ (2002) Chem Eng Sci 57:3767–3779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Varian/Polymer Laboratories for their kind gift of the HDC columns and, in particular, Richard Lentner for helpful advice. Support and advice from Wyatt Technology Corporation is also gratefully acknowledged. We also thank Thomas H. Mourey (Eastman Kodak) for helpful discussions during the initial stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Striegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brewer, A.K., Striegel, A.M. Particle size characterization by quadruple-detector hydrodynamic chromatography. Anal Bioanal Chem 393, 295–302 (2009). https://doi.org/10.1007/s00216-008-2319-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2319-y

Keywords

Navigation